Understanding the
Turfgrass Crown

By Richard J. Hull

This is the first of a three-part series on turfgrass morphology, function, physiology and management implications. This series will feature crowns, leaves and roots, all vitally important parts of turfgrass plants. Today we will concentrate on turfgrass crowns.

In his recent textbook on turfgrass management (1998), Nick Christians states, “The crown is the center of activity for the turfgrass plant, and as long as it is alive the plant is alive.”

If anything, this is an understatement. The crown literally is the turfgrass plant, or at least that which makes a turfgrass a perennial plant. The primary growing points (meristems) are located in the crown which means all grass organs originate from the crown. Most of the energy reserves of a turfgrass plant are stored in its crown.

During the winter and even during drought-induced summer dormancy, the crown may be the only part of a grass plant that survives. Considering all this, it may appear strange that most turf folks rarely think about the well-being of grass crowns when developing a turf management program.

Leaves are certainly considered when deciding on a height of cut and the impor-

Figure 1. Stylized image of a turfgrass crown with nodes identified that will contribute to a flowering culm, produce tillers, and give rise to rhizomes or stolons. Only the flowering culm internodes will elongate. Roots are much reduced for a crown old enough to have so many nodes. All but the youngest leaf are removed.
The mother of a turfgrass

The crown is a stem from which all other stems, leaves and most roots originate. It is literally the mother of a grass plant. As long as the crown is alive and healthy, the plant can survive even when all other organs have been killed. Insects and diseases that spare the crown, even if they ravage leaves and roots, rarely cause turfgrass death. Diseases such as Pythium blight and severe infections of stripe smut will attack the crown and, in so doing, kill the plant.

The crown originates from the basal nodes of a seedling grass plant (Hull, 1999a). Because most early shoot growth of grasses involves the initiation and elongation of leaves, the stem remains just below the soil surface and experiences little vertical growth. This continues for some time while leaves are being produced and a root system develops. Both leaves and roots originate from the crown but the crown itself grows little except for a modest increase in diameter (Fig. 1).

Leaves are produced as nodes emerge at the stem apex but there is virtually no internode elongation. As with all flowering plants, a bud is formed just below the line of attachment between each leaf and the stem but on the side opposite the point of leaf initiation. Because the stem does not elongate, these buds are clustered on alternating sides of the crown. Such buds do not resume growth into basal shoots until the plant achieves the appropriate developmental state.

The basal nodes of a developing crown give rise to the adventitious roots that will become the principal root system of the plant. The primary roots emerge from the germinating seed but they are replaced by the adventitious roots which emerge from crown nodes. The primary roots can survive for several weeks or more than a month and make a modest contribution to the plant’s nutrition and supply of water. Eventually, they are shed and the adventitious roots assume the task of establishing and maintaining an intimate relationship with the soil. Root structure and function will be the subject of a future report.

For the turf manager, the most important and obvious function of turfgrass crowns is their role in initiating leaf and stem development. The apical meristem is positioned at the apex of the crown where it undergoes cell divisions, producing new cells for leaf and nodal bud development. Unlike apical meristems of broad-leaved plants (dicotyledons), the apical meristem in grasses produces leaf primordia that retain meristematic activity at their base, below the shoot apex.

Cell divisions

The cell divisions occur in a line around the apical dome, giving rise to a leaf primordium that forms a ridge just above what will become a stem node. Cells at the base of the leaf primordium remain meristematic and form the intercalary meristem at the base of each developing leaf that supports the continued growth of that leaf even after more apical leaves have been initiated.

At any given time, most turfgrasses have from five to 10 leaf primordia present, below the apical meristem at various stages of development (Turgeon, 1999). Further leaf development from its primordium and the phytomer concept of grass structure will be discussed in a future article devoted to turfgrass leaves.

A nodal bud is initiated at the base when the ring of dividing cells that will become a leaf primordium completely encircles the shoot apex. A small group of surface cells just below the developing leaf primordium and on the side opposite leaf initiation, begin to divide and form a new meristem.
This meristem develops into a nodal bud and has the potential of becoming a secondary apical meristem capable of producing a secondary shoot: tiller, rhizome or stolon (Fig. 1).

Nodal buds are formed opposite most grass leaves; exceptions being the seed leaf (coleoptile), the bud scale (prophyll) and the flower scale (palea). These are all first leaves produced by an apical meristem of a new shoot (Madison, 1971) and generally arise from a node that fails to initiate a bud.

Stems emerging from the crown

Secondary stems can emerge from nodal buds on the crown and contribute enormously to the ability of a grass plant to produce a thick stand and spread vegetatively. These secondary stems include tillers, rhizomes and stolons.

Tillers emerge from nodal buds near the midregion of a grass crown. The buds normally resume growth while surrounding leaves are still functional. Growth is positively geotropic so the tiller elongates upward between the sheaths of leaves. Tillers are said to be intravaginal shoots reflecting their growth among and emergence from encircling leaf sheaths. Tiller production adds shoots to a turfgrass stand and contributes in a major way to increased turf density.

Crown buds commence growth as tillers when the plant reaches a specific age or more likely a suitable energy status. Most tillering occurs in cool-season grasses during the autumn and is most abundant when temperatures are moderate to low. Tiller production also occurs in the spring when temperature appears to be less of a factor.

During the hot summer months, tiller emergence is much reduced although this can be influenced by management. In general, mowing promotes tiller production and this is also influenced by leaf length. Long leaf blades are correlated with few tillers while shorter leaves are associated with more frequent tillering (Etter in Madison, 1971). Very close mowing reduces the photosynthetic leaf surface so much that the plant’s energy status is lowered and tillering declines. Modest fertilization will promote tillering. Excessive nitrogen promotes leaf growth but depresses tiller production.

Tiller production is not unlimited. There can be no more tillers than there are crown buds that can develop into tillers. With one bud per node, the number of nodes in a grass crown sets the upper limit for tillers that can be produced.

Of course, as each leaf is initiated from the crown apex, a new bud is formed and thus another potential tiller. Most grasses can produce no more than 14 to 20 leaves per stem (Madison, 1971).

Most tillering occurs in cool-season grasses during the autumn and is most abundant when temperatures are moderate to low.

![Figure 2. Impact of nitrogen supply on rhizome growth of Kentucky bluegrass (Madison 1971).](image)
quent and close mowing associated with turfgrass management limits secondary crown development to levels well below that observed in unmowed or infrequently cut perennial grasses.

Rhizome growth

Rhizomes are horizontal shoots that also emerge from basal crown buds in some grasses. Rhizome initiation occurs in a seedling plant, tiller or plant originating from a rhizome or stolon bud at about the five-leaf stage. The trigger for rhizome initiation appears to be carbohydrate or energy status (Madison, 1971) but we cannot exclude a possible role for day-length or temperature.

Little rhizome growth occurs during the winter in cool climates but increases markedly from March through June. The high temperatures of summer depress rhizome growth in cool-season grasses but can stimulate their growth in warm-season grasses.

Again, in cool climates, rhizome growth is favored during September through November, declining again with the onset of cold weather. Managing grass as turf appears not to inhibit rhizome initiation and growth although the length of rhizomes is normally much reduced. This is likely a restriction imposed by stand density rather than by insufficient energy.

Rhizome growth progresses through three phases. The initial primary growth occurs in a downward direction that places the apex well below the soil surface. Soon, this is followed by horizontally oriented secondary growth that is the major growth phase of most rhizomes. Unless stand crowding is limiting, the secondary phase can consist of 20 nodes being produced over a distance of several feet.

A rhizome is a stem distinctly different from the crown in that internodes elongate by as much as an inch or more. The trigger for rhizome initiation appears to be carbohydrate or energy status (Madison, 1971) but we cannot exclude a possible role for day-length or temperature.

Low rates of nitrogen fertilization will stimulate rhizome growth but even moderate rates will retard growth (Fig. 2). Nitrogen also will exacerbate the inhibitory effect of high temperatures on rhizome growth. At 90-100°F, nitrogen applications can cause rhizome death in cool-season

![Figure 3. Seasonal changes in simple sugar content of crown tissue from Kentucky bluegrass grown at two N levels (Hull & Smith 1974).](image-url)
grasses. Reduced rhizome growth in response to nitrogen application results from fewer nodes being initiated rather than shortened internode elongation.

Nitrogen can promote rhizome growth under some circumstances. While only low nitrogen plants will initiate many rhizomes during the fall, autumn fertilized plants have been observed to produce more rhizomes during the following spring.

Again, much of this nitrogen effect can be attributed, at least in part, to plant energy status. This nitrogen inhibition on rhizome initiation and growth is more characteristic of mature turf and much less evident in young turfgrass stands.

Stolons' horizontal growth

Stolons are similar to rhizomes in that they, too, arise from basal buds on the turfgrass crown. They differ in not undergoing a downward primary growth phase but rather growing horizontally right from the beginning.

As a result, stolons grow along the soil surface and their cataphylls are more likely to consist of both a leaf sheath and small blade. Also, the nodal buds of stolons are more likely to initiate new plants quickly than are the buds of rhizomes. If stand density is not too great, stolons can grow for several feet before their apex turns upward and initiates a terminal shoot from which a new crown will develop.

Vegetative spread via stolons is characteristic of many warm-season turfgrasses including bermudagrass, buffalo grass, zoysiagrass, carpetgrass, centipedegrass and St. Augustinegrass. Many of these grasses are commercially propagated and established by planting stolons.

Among cool-season grasses, creeping bentgrass, velvet bentgrass and rough bluegrass are the only ones that spread primarily by stolons. Cool-season grasses that spread vegetatively are more likely to do so via rhizomes.

Both rhizomes and stolons arise from buds at the base of a grass crown (Fig. 1). If leaf sheaths are still present when a basal bud resumes growth, the rhizome or stolon breaks through the sheath forming what is termed an extravaginal shoot. Once rhizome or stolon growth begins, several normally are initiated within a short time from basal crown buds, allowing the plant to spread in all directions.

If stand density is not too great, stolons can grow for several feet before their apex turns upward and initiates a terminal shoot from which a new crown will develop.

A turfgrass crown will be induced to flower when conditions are favorable. In cool-season grasses, flower induction frequently involves exposure to cold temperatures for a period of several weeks or longer. This vernalization response is centered in the crown's apical meristem but does not elicit an immediate response, probably because it occurs during late fall and early winter. Temperatures of between 32°F and 45°F are sufficiently cold for vernalization, although the process is more rapid and complete at lower temperatures. A period of warm temperatures can devernailize a plant (Turgeon, 1999, p. 36), requiring a re-exposure to cold.

Normally, flower initiation also requires an appropriate photoperiod (length of the day-night cycle). Vernalization predisposes the plant to flower but, for many cool-season grasses, short days (long nights) are also required for full flower induction.

Flowering hormone

The photoperiodic signal is perceived by the leaves, where it triggers the synthesis of a flowering stimulus. This 'flowering hormone' is translocated via the phloem to the shoot apex where it induces flowering. The flowering hormone has not been identified but recent discoveries of the broad range of signal molecules that can be transported by the phloem considerably expands the number of possible candidates (Hull, 1999b).

While most cool-season grasses are
induced to flower during the short days of late fall, flowering is delayed until the long days and warm temperatures of spring. For this reason, tillers initiated during the spring often will not flower until the following spring while tillers produced during the fall will flower that spring. While December tillers might flower, tillers maturing in late January or February did not flower (Madison, 1971, p. 32).

When a crown apex is induced and initiated to flower, the apical meristem elongates and produces many buds that will develop into spikelets (flower clusters). At the same time, or soon thereafter, the upper internodes of the crown begin elongating and lift the developing inflorescence through the tube formed by encircling leaf sheaths.

During this elongation process, the youngest leaves emerge as culm (stem) leaves and the maturing inflorescence is lifted above the flag leaf into the atmosphere. This is the only time a grass crown apex is visible as a true stem. Flower induction is terminal for the flowering culm — it will die once flowering and seed set are completed.

However, the nodes lower on the crown that did not experience internode elongation continue to produce tillers from their buds, and these do not die because the crown apex has flowered. In this way, the crown enlarges as more secondary crowns are added to it, which, in turn, will produce tertiary tillers and crowns.

Crows as storage organs

The grass crown is the only truly perennial organ of a grass plant. Roots and leaves normally live for less than a year. Rhizomes and stolons are regenerated each year, which leaves only the parent crown with any permanency.

Consequently, only the crown is able to maintain energy reserves to power new growth and replace injured organs. Rhizomes, stolons and leaf sheaths do serve as temporary storage organs but their energy reserves are pretty much directed toward local needs. Rhizomes and stolons support new shoot and nodal root growth and rhizome extension. Leaf sheaths support the emerging inflorescence while roots actually serve a minor storage role in grasses.

When you read about carbohydrate reserves accumulating or being used in response to a turf management practice, it is crown reserves that are most involved. Crown reserves undergo seasonal cycles being drawn down during spring and fall regrowth and replenished during the late spring and fall-winter periods.

Yes, even during the winter, cool-season turfgrasses carry on photosynthesis that powers root growth and replenishes carbohydrate reserves in the crown (Hull, 1996). The turf may appear brown and nonfunctional but many green leaves lie just below the dead surface leaves and they are photosynthetically active whenever temperatures are above freezing.

Cool-season grasses store mostly simple sugars and fructans (Hull and Smith, 1974). Some temporary starch accumulation can occur in leaves, but the primary storage carbohydrates are fructans, which

The grass crown is the only truly perennial organ of a grass plant.

Figure 4. Seasonal changes in fructan content of crown tissue from Kentucky bluegrass grown at two N levels (Hull & Smith 1974).
are polymers of fructose built on a sucrose molecule.

Both simple sugar and fructan concentrations undergo substantial seasonal variation, and this variation is strongly influenced by nitrogen nutrition (Figs. 3 & 4).

Nitrogen stimulates shoot growth during the spring and this draws down all carbohydrate reserves to very low levels. Less heavily fertilized turf also experiences a spring carbohydrate decline but it is much less dramatic. During the summer and into the fall, fructan levels gradually increase but they are always more abundant in low fertility turf (Fig. 4).

Simple sugars are present in lesser amounts and they increase when metabolic activity is high (rapid growth or stress induced respiration). For that reason, heavily fertilized grass that is growing more rapidly normally has higher simple sugar levels, except during the spring when energy levels are generally diminished (Fig. 3). During the winter months, reserve carbohydrates slowly increase unless conditions are such that photosynthesis is inhibited.

Warm-season grasses store starch in their crown and stem tissues along with variable amounts of sucrose. They also experience seasonal variations with a spring-time low and a progressive increase throughout the summer and early fall. These grasses generally experience winter dormancy and carry on little photosynthesis at that time.

Consequently, carbohydrate reserves are highest in mid-autumn and slowly decline during the winter and early spring. In mild climates, where winter dormancy is not induced, warm-season grasses will grow all year and their carbohydrate reserves normally experience less seasonal variation.

For all grasses, low carbohydrate concentrations in crown tissues indicate vulnerability to adverse environmental conditions and damaging management practices. At such times, the grass simply lacks the energy to respond aggressively to stresses or injury. Recognizing this fact may assist in altering management practices so as to minimize grass injury.

Turf management and crown functions

The turf manager is confronted with an interesting problem in that the management program should be geared to preserving the integrity of a grass organ that is largely invisible.

Crows must be preserved because all other organs can be replaced except for them. Simply knowing the crown is present and is important represents a good first step to sound turf management. With this realization, several management variables can be analyzed for their impact on the vitality of grass crowns.

Mowing. Since all new leaves emerge from the grass crown, any mechanical injury to the crown should be avoided. If grass appears to have heaved during the winter or in any way appears excessively exposed, consider rolling or topdressing before the first mowing. Raising the height of cut for the first mowings in the spring may reduce crown injury when the cutting height is lowered later.

Flowering is not a problem for most grasses maintained as a turf. However, Poa annua and some Kentucky bluegrass cultivars can flower heavily in the spring and early summer. The flowering culms will die, but that is no reason to lower cutting height to remove as much dead stem tissue as possible.

The crown below each flowering culm is not dead and will produce tillers from its buds that will rapidly replace the lost grass. Close mowing may scalp the crowns, causing their death, and it will surely reduce the leaf surface feeding the crowns, thereby limiting their ability to generate new tillers. Remember, crown reserves may be low during early to mid-spring.

Fall is a good time to raise the cutting height. Photosynthetic leaf surface is the greatest resource a grass plant has to replenish depleted carbohydrate reserves. Replacing roots and generating tillers in the fall can
lower energy reserves in the grass crowns. These need to be replaced, and promoting photosynthesis is the only way to do it.

A higher cutting height will maintain a larger leaf surface area which will make more carbohydrates available to the crowns. During the winter, surface leaves will desiccate and die but the health of your turf depends on the photosynthetic activity of lower leaves. If grass is mowed too close, there will be no lower leaves, the stand will be weakened and the turf will be ill prepared to resume spring shoot growth.

Fertilizer management. Carbohydrate reserves in grass crowns will be reduced during the spring, and nitrogen fertilizer increases this problem. Consequently, mid-spring fertilization that will stimulate excessive leaf growth should be avoided. Some of that growth is occurring at the expense of reserves in the crowns.

This is more than a problem of having to mow more frequently or disposing of additional clippings. Crown starvation can be occurring, and that could result in stand collapse should disease or other stress conditions develop. Assimilating nitrogen is an energy demanding process, and if all it accomplishes is more rapid leaf growth that is soon removed by mowing, the grass plants suffer a net energy drain.

Because nitrogen fertilization promotes leaf growth, it should be avoided whenever tillers, rhizomes or stolons are being initiated. A light application of nitrogen in early fall will probably stimulate tillering, and late fall fertilization after most tillering has occurred also will be beneficial.

Inappropriate nitrogen applications can divert so much energy from rhizomes and stolons that they succumb to disease or are killed by other stresses. Poorly timed fertilizer applications can seriously retard rhizome and stolon growth and thereby limit the ability of grass to spread, repair damage and increase density. This is most likely to result from heavy nitrogen applications during mid-fall and mid-spring.

Fertilizer applied during early spring will generally be beneficial. If shoot growth has not yet commenced, nitrogen will not stimulate excessive growth but will be absorbed, reduced and assimilated and then be available to support all growth when it is initiated.

Other plant nutrients are less sensitive with respect to growth stimulation and the maintenance of adequate energy reserves in crowns and other stems. Following a period of rapid shoot growth and heavy clipping production, whether stimulated by nitrogen or not, a light application of phosphorus, potassium and even micronutrients is often beneficial.

Nutrients are lost from turfgrasses when clipping removal is heavy. These nutrients should be replaced before the plants are asked to tolerate stress conditions and recover from wear or other injuries. A major advantage of providing nutrients following heavy growth is that they will increase the efficiency of metabolic processes, making more energy available for crown replenishment and appropriate responses to stress conditions.

Water management. Crowns are at or just below the soil surface and, as such, have little insulation from rapid changes in temperature, moisture status and other environmental variables. Crowns are also living stems that require oxygen for normal functioning.

Consequently, they should not be subjected to prolonged flooding or ice cover. Other plant organs are no less sensitive but can be replaced; crowns cannot.

Heavy irrigation that promotes standing water or poor drainage that allows water to pond for extended periods should be avoided. This is important during the warm months because metabolism is rapid and oxygen supplies can quickly become exhausted.

It is no less important during the cold season because crown activity continues.
Prolonged periods of flooding can cause significant injury due to anaerobic conditions and disturbed metabolism.

Disease and other secondary stresses can be especially damaging to grass weakened by periods of anoxia. Soils are generally wetter during the cold season and surface flooding can easily occur without notice. This can even occur under a snow cover where it is especially difficult to monitor.

Being conscious of good drainage is obviously an important part of sound turfgrass management. However, the sensitivity of perennial grass crowns to anoxic conditions is another critical reason to take drainage problems seriously. It is not uncommon for winter-spring disease problems to be aggravated by a weakened turf resulting from periods of surface flooding and anoxic stress.

Hopefully this discussion has made you more conscious of the need for managing turfgrasses with crown well-being in mind. Crowns may not be visible but maintaining their health is an essential objective of effective turfgrass management.

— Richard Hull is Professor of Plant Science at the University of Rhode Island, Kingston, RI.

REFERENCES CITED

Hull, R.J. 1999c. Principles of Turfgrass Culture;
Why It Takes 10 Years to Bring Products to Market

By Joe Yoder

To score a home run in baseball, the runner has to touch all four bases. Companies developing plant products for the Green Industry have dozens of bases to touch before even getting to first base. If that sounds confusing, be assured that it is.

Even to an insider, the complexities of bringing a new herbicide, fungicide or other pesticide to the market are bewildering. While the starting point is always grower needs, there are a host of other factors that go into developing a product.

The United States Environmental Protection Agency’s (EPA) policies, requirements of research and the competitive sales environment established by other manufacturers all play a role in the game. It is a process of asking questions, looking for answers and taking risks on unknowns:
* What will the end user need or want?
* Will the material be safe?
* What does the EPA want to register?
* What will the competitors have brought to market?

Just to add a degree of difficulty, those questions all have to be answered in the framework of what the "right" answers to those questions will be in 10 years. That’s because it will take 10 years to bring a just-discovered molecule to the market—if all goes well.

Basic compounds

For most basic manufacturers, the compound discovery process begins with the synthesis and screening of molecules. Usually, newly synthesized molecules arise from one of three sources:

1. *Bio-rational in origin* – that is, they are made to target a known site of activity in the plant or pest.
2. *An area of known chemistry with known activity* – that is, there is a lead compound, either from previous development work or found in nature; and the chemist is working around this lead looking for superior activity not already covered by a patient.
3. *A novel compound with no known connection to the desired activity.* Many compounds in this last group are accessed from nonagricultural chemical groups and can be the source for "new to the world" products.

These molecules are then sent through a screening process using complex laboratory and greenhouse tests.

As recently as five to 10 years ago, more large basic manufacturing companies screened between 5,000 and 15,000 compounds a year. As a result, the screening process was a bottleneck.
Today, these larger companies are screening 50,000 to more than 100,000 compounds per year, thanks to the great strides that have been made in miniaturizing, automating and refining the screening process.

Many companies have made arrangements to access catalogues of molecules from all over the globe, originally synthesized for a diversity of reasons. It is not uncommon for more than 50 percent of the screened molecules to come from such sources.

Of the 100,000 compounds screened in the labs, only 5,000 to 10,000 will go on to more complex and space intensive greenhouse screening. Of these, only about 50 to 100 will go to initial screening in the field, usually on experimental farms.

For a material to get past the screening process and make it to first base, there still are questions that must be answered. Researchers investigate the primary characteristic that is being sought. They ask: does the molecule do anything that is biologically interesting? Is it active? If these questions are positive, a company will begin to intensively research its molecule efficacy and crop safety.

Efficacy and crop safety are the first items to be addressed in the field. To do this, the surviving candidate compounds are taken out of the lab and greenhouse and used under conditions that approach field conditions. Often, this will be a worldwide testing program conducted at research farms specializing in this type of testing.

In addition to efficacy confirmation and crop safety, the goals in the initial field trails are analogue separation, rate definition, formulation type definition and leads for future synthesis.

Testing in stages

Up to this point, all work has been conducted in what is often referred to as Stage 1. After initial field results have been analyzed, the top one or two leading candidates may be promoted into Stage 2, if deemed worthy of further investment.

During Stage 2, the knowledge base will be expanded by conducting additional field testing and preliminary environmental fate, toxicology and process development studies.

It is during Stage 2 that "red flags" or issues can come up from a variety of sources including efficacy or crop safety problems, toxicology or environmental concerns, patent assessments, production cost estimates and market potential. Failure to clear any of these hurdles will result in a material being eliminated from play.

Assuming the answers to the questions in Stage 2 are promising, then a decision to promote to Stage 3 or full development will be made.

Now it is time for a potential product to put on its game face and get serious. Up
until this point, the compound has been in development for about three years and only one or two million dollars have been spent. This is spare change compared to the investment that will be made in a material that could be a potential champion.

Compounds that make it to Stage 3 will spend another six years in development. The process is likely to cost an additional $20 million to $40 million.

Going into development
A promoted compound will spend up to six more years in Stage 3 development and the process is likely to cost an additional $20 million to $40 million. This is a big decision and commitment for a company to make. Even at this stage, there are no guarantees of success. In fact, there are several ways the product can fail.

The material will go through mammalian toxicology studies, including a 90-day sub-chronic study, two-year rat studies and 18-month mice studies, reproductive and neurotoxicity studies and metabolism studies on rates, mice and crops.

Scientists will look at the environmental metabolism and fate of the material in soil and water. They will do ecotoxicology studies, including fish life cycle, avian reproduction and acute in fish, birds and invertebrates.

Once all of the studies are complete, summaries are assembled into an EPA dossier. A recent dossier submitted to EPA, for example, included 220 individual studies, draft labels, some 260 volumes of data and a Reduced Risk Summary Document. Talk about light reading!

Expedited EPA review process
The most realistic case is that it will take 24 months for EPA to review the package and register the product, assuming it gets expedited review status from the EPA.

The grounds for such a priority and expedited review are that the product qualifies as either a methyl-bromide replacement, is an organophosphate replacement or is a reduced risk product. A product can qualify for reduced risk status if the company can demonstrate that it:

* reduces the risk of pesticides to human

<table>
<thead>
<tr>
<th>New Product Development Schedule/Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis/Stage 1</td>
</tr>
<tr>
<td>Year 1</td>
</tr>
</tbody>
</table>
NEW PRODUCT DEVELOPMENT FACTS

- Total cost to register a new active ingredient is $25 to $40 million.
- More than 120 types of studies must be completed for registration.
- A typical Section 3 dossier is 25,000 pages or more in length.

Costly process

Next time you sign the invoice for a bottle of pesticide, keep in mind that the typical cost, just to complete the approval process, can be between $25 million and $40 million or more. Another $20 million to $100 million can be spent on manufacturing facilities.

More than 120 studies will be completed during that 10-year period. The result is known as a Section 3 dossier: a document typically about 25,000 pages long.

Tough as it all sounds, successful companies understand and appreciate that this process is required. They work to partner with the EPA, giving the government what it needs to make its decisions. They understand the limitations at EPA and try to resolve them or work within them.

By being open and honest - getting issues on the table early - it is possible to invest in safe and effective alternatives.

All of that time, energy, research and development is included in the bottle that you’ll empty into the spray rig. The result, we hope, is profitable to the user, to the manufacturer and to society as a whole.

— The author is Director of Research & Development, Novartis Turf & Ornamental Products, Greensboro, NC.
Vermiculite scare is worrisome, but not a crisis

Everyone who has worked with grass, plants or flowers has used vermiculite. It is a common soil additive and conditioning material, used in almost every landscaping operation imaginable, including mulch for seed beds, as a medium for rooting plant cuttings and in potting plants.

Early this year, the U.S. Environmental Protection Agency (EPA) made public a troubling announcement. A large amount of the vermiculite used as a soil conditioner and for building insulation taken from a mine in Libby, MT, is contaminated with a particularly toxic form of naturally occurring asbestos called tremolite-actinolite.

No official ban

While he says there is no official product ban, recall or anything of the type, Paul Peronard, on-scene coordinator with the EPA in Denver, says, "I'd be concerned."

Vermiculite was discovered in Libby in 1881 by gold miners. In 1919, Edward Alley discovered its unique properties. In the 1920s, the Zonolite Company formed and began mining vermiculite. By 1963, W.R. Grace bought the Zonolite mining operations. The mine closed in 1990.

While in operation, EPA says, the vermiculite mine in Libby may have produced 80% of the world's supply of vermiculite.

"We think that the Zonolite product from the mine in Libby — and it is only this mine — might have as much as 2 to 3% asbestos in it. We also think that when it is stirred and used, it will release asbestos into the air," Peronard says. He emphasizes that the problem is associated only with products from the Libby operation.

The product could cause asbestosis, a restrictive lung disease which can be fatal. In addition, exposure to asbestos can cause lung cancers, including a cancer of the lung lining called mesothelioma. While lung cancer has a number of associated causes, asbestosis is uniquely associated with exposure to asbestos. The combination of smoking and exposure to asbestos greatly increases the risk of developing one of these lung cancers.

The EPA is most concerned about people being exposed to airborne asbestos and breathing in the tiny fibers. "If you used the product once or twice, it's probably not a big deal," Peronard says. "If you used this brand (Zonolite) over a period of time, I don't have a solid answer," he says. However, his advice to anyone who suspects they might have a problem is to go to a physician and get their lungs checked.

There is some good news for landscapers, superintendents and grounds managers using vermiculite. Although people can be exposed to asbestos dermally (through the skin) or by ingestion (eating, drinking), these are not major exposure routes and do not pose nearly as great a risk as inhalation.

Outdoor use

Although there is no safe level of asbestos exposure, the fact that grounds crews usually use vermiculite outdoors and it is often used damp (so there is less likelihood of the material floating in the air) bodes well. Of far more concern, it appears, is the use of the material as insulation in homes and businesses.

Currently, the EPA is most concerned about people with Zonolite insulation in homes. W.R. Grace no longer sells the material and has not sold it for several years. However, Peronard notes that the material is still found in commerce. It still might be on the shelves at landscape supply stores or in bags in storage sheds. "We do know it was sold to other companies," he adds. "We don't have a handle on what is still on the shelf."

For more information, contact the EPA Information Center, at 406/293-6194.
16-Minute Checklist — for ‘May days’

So it’s Spring and you’ve been running around for the past five weeks like a chicken without a head? Join the club.

Somehow, it seems that every May day ends up in some sort of a “mayday” call. Just be sure that the problems are simple agronomic challenges and not disasters that will require a real 911 call.

Safety specialists at Ohio State University put together a checklist for the shop area. I went through it—the version below takes about 16 minutes to complete (not counting time required to fix problems). Just review the list and note whether it’s “OK” or “Needs Work” on your to-do list. It’s worth doing:

- **OK** □ Needs Work Power tools are properly grounded or double insulated and have prior guards/shields
- □ OK □ Needs Work Welding/cutting torch gas cylinders are properly secured
- □ OK □ Needs Work Extra gas cylinders have caps over valves
- □ OK □ Needs Work Extra oxygen and acetylene are stored at least 20 feet apart
- □ OK □ Needs Work Welding/cutting torch area are properly ventilated
- □ OK □ Needs Work Welding rods are removed from clamps when not in use
- □ OK □ Needs Work There is 35 feet between welding area and combustibles
- □ OK □ Needs Work Portable ladders are in good repair, modified not to conduct electricity, and are free of paint (which hides cracks)
- □ OK □ Needs Work Lawn mowers are fitted with discharge deflectors over moving parts
- □ OK □ Needs Work Mowers have proper shielding for deck belts and other moving parts
- □ OK □ Needs Work Mowers have operational safety interlocks
- □ OK □ Needs Work Welding/cutting torch area are properly ventilated
- □ OK □ Needs Work Extra oxygen and acetylene are stored at least 20 feet apart
- □ OK □ Needs Work Extra gas cylinders have caps over valves
- □ OK □ Needs Work Extra oxygen and acetylene are stored at least 20 feet apart
- □ OK □ Needs Work There is 35 feet between welding area and combustibles
- □ OK □ Needs Work Portable ladders are in good repair, modified not to conduct electricity, and are free of paint (which hides cracks)

Some time spent now will eliminate a lot of sorrow later on. Assign someone to walk around with this list and be sure to follow-up on those that fall into the “Needs Work” category. You’ll save time in the end.

— Curt Harler

In Future Issues

- Weeds as Indicators of Environmental Conditions
- Management Forum answers more of your tough turf questions
- Inappropriate Use of Insecticides
- Salinity research update
Field Advisors

Rob Anthony, Green Bay Packers
J. Douglas Barberry, Turf Producers International
Richard Bator, Atlantic City Country Club
F. Dan Dinelli, North Shore Country Club
Merrill J. Frank, Columbia Country Club
Michael Heacock, American Golf Corp.
Vince Hendersen, River's Bend Country Club
Paul Latshaw, Merion Golf Club
Kevin Morris, National Turfgrass Evaluation Program
Sean Remington, Chevy Chase Club
Tom Schlick, Marriott Golf
Ken Schwark, Roddy Ranch Golf Course
Paul Zwaska, Baltimore Orioles

Editorial Review Board

Dr. A.J. Powell, University of Kentucky
Dr. Eliot C. Roberts, Rosehall Associates
Dr. Garald Horst, University of Nebraska
Dr. Doug Brede, Jacklin Seed Company
Dr. Eric Nelson, Cornell University
Dr. Keith Karnok, University of Georgia
Dr. Michael Villani, Cornell University
Dr. Richard Hull, University of Rhode Island
Dr. Vic Gibeaut, University of California
Dr. Pat Vittum, University of Massachusetts
Dr. Rick Brandenburg, NC State University

Use of TGT Articles

Permission may be granted on request for TGT articles as course material and for reprints in publications.

For course material: We can group articles by subject for you. Please send request to:

TurfGrass Trends
Advanstar, Attn: Permissions
7500 Old Oak Blvd.
Cleveland, OH 44130
800-225-4569, ext. 742

Index and abstracts are available electronically through www.landscapegroup.com and Michigan State University, TGIF 800-446-8443, http://www.lib.msu.edu/tgif