Demographics can have a wide use in sports turf planning. If you understand demographics you then know how many people will live in your community, how old they are, how many children they have, their income, their education level and ethnic characteristics. You will not only know who is there today but through proper projections, you can predict how that community will change over the next five, ten or even twenty years. Will it have more children or will it be an aging neighbourhood?

Putting Demographics to Use

Once you know this information you are in a better position to pinpoint where demands for any given sport will be in the future. You can identify where surplus fields will be located (e.g. demand for sports fields will decline in aging neighbourhoods) and most importantly you can plan for the future by ensuring sufficient land has been acquired in the right locations for those land extensive playing fields. It will also help financially by giving you the information you need so you do not over build as a reaction to what may be a short lived peaking of a particular age group’s demand for a particular sport.

Planners must consider demographic trends. For example, seniors, on average, do not like the noise or the activity associated with nearby sports fields. Thus, before upgrading older sports fields in aging neighbourhoods, planners should look at land acquisition and costs in other locations that may be more demographically suitable. Examine who the main users of the sports fields will be and determine what they like or want in a sports facility and what they don’t like. How well will it need to be maintained? Be aware that there are huge differences in sports field user demographics.

Current demographics indicate trends toward better turf maintenance and a desire for higher quality facilities. Convenience and accessibility are a few of the points that should be taken into consideration. Today, bigger is better – you can achieve multiple users in a single location with a stronger emphasis on scheduling and permitting uses of the same fields. More than one field for the same sport in the same area means more attention must be paid to seven day scheduling. Fields must be maintained for more play and longer playing times. Much more attention will need to be paid to turf management in order to maintain these fields to a high standard due to excessive wear. Rain date strategies will need to be discussed with staff as well as participants.

Capture Rates

Predicting demand is always difficult for planners. One technique is to identify the “capture rate” for each sport. The capture rate is the number of people who play a given sport by age group. For example, you can determine the number of persons who will play youth soccer by matching the capture rate of youth soccer (say 12% of all youth are enrolled in a soccer program) to the number of youth who will live in the community five years from now or ten years from now. By multiplying the 12% by the number of ...
Demographics for Sports Fields
CONTINUED FROM THE FRONT COVER

projected youth you then know whether or not there will be more youth playing or fewer youth playing soccer in that community.

By knowing the capture rates for various sports and plotting them over time one can also gain further insight into whether or not there will be an increase in the number of adults or females playing any particular sport in the future. For example, the trend over the past ten years of having more and more youth involved in soccer is having an influence on not only a shortage of fields for youth but also on the size and quality of the fields because more young adults having been introduced to the sport and now want to be able to continue to play. If the capture rate for adults playing soccer increases from a current 2.2% to 5%, the impact is enormous as the number of adult quality pitches then also needs to double. When one considers the fact that females are also now playing the game, you automatically double the population base to draw potential players from and therefore again know that there will be an increased demand for the number of playing fields required.

Techniques being applied to help cope with increased demands for playing fields include monitoring fields to ensure they are actually being used when they are booked, increasing the use of school facilities and trying to increase the quality of school fields, rotating fields to ensure proper rest periods, designating some fields for just casual play, increasing the soccer schedule from a historic four day to a seven day schedule, establishing "adopt-a-field" or home field approach, moving away from allocation based on past allocation to allocation based on actual needs, and last but most important — greater attention to turf management in order to protect this limited resource.

Examples were given of case studies in Waterloo and Mississauga of how demographics were applied community by community to predict soccer field requirements, quality of fields required and location of areas where opportunities existed to redevelop existing fields to other uses such as ball diamonds to soccer pitches or playing fields to shuffleboard/bocci courts or spraypad facilities to reflect the needs of specific areas.

From this brief summary, it is apparent that there is a need not only to concentrate on present demographics but also on future predicted trends. Hiring the proper expertise will help to anticipate and plan for the best possible use of sports fields.

CGSA Executive Director to Retire

Vince Gillis, National Executive Director for the Canadian Golf Superintendents Association (CGSA) since November 1989, announced recently that he plans to retire in early 2002.

Mr. Gillis said that as of November 1, 2001, he will have completed 12 years as the Association's Executive Director. He felt that it was time to give up full-time employment and pursue his personal interests.

Mr. Gillis expressed his satisfaction with things that have been accomplished over the years he has served CGSA and said that he considered it a privilege for him to serve the members of such a dedicated and professional group of people including superintendents, industry affiliates, educators, students, etc.
Turf News Briefs

2002 WORLD SOCCER CHAMPIONSHIP • REAL GRASS IN THE SKYDOME

Canada Lands Worlds
The inaugural women's under-19 world soccer championship is coming to Canada.
The Canadian Soccer Association announced this spring that Canada had won the right to host the 2002 tournament over bids from South Africa and Ghana. The event will be centred out of Edmonton's Commonwealth Stadium with other games to be played at Winnipeg's Soccer Complex and either Burnaby's Swangard Stadium or Victoria's Commonwealth Stadium.

It is scheduled for late August-early September in 2002. Exact dates will be announced later.

Twelve countries will take part with Canada, as host, earning automatic entry. The tournament budget will be in the "multimillions," said Kevan Pipe, chief operating officer of the Canadian Soccer Association.

—The Record, March 17, 2001

Jays' Field of Dreams
The Blue Jays will play on real grass at the SkyDome if Toronto wins the right to host the 2008 Olympic Games.

Gord Ash, The Blue Jays general manager, confirmed his organization has agreed to let the Olympic organizers place real grass in the Dome for at least the 2008 season if Toronto wins the Games.

"Their first suggestion to us was that they wanted to do it after the all star break (during the season)," said Ash, who is with the Jays in Florida. "But we insisted that if they wanted to do it, it needed to be in place for the whole season. And we've both signed off on that," Ash said.

Marnie McBean of the TO-Bid also confirmed the deal.

Ash said the Jays are excited about the prospect of finally playing on grass. The team still plays on turf, which is very fast and springy and not as forgiving as grass in terms of cushioning athletes in falls.

"It's something we always talked about," Ash said. "The fans and the players want it and there are very few facilities that have Astroturf anymore. It's certainly going the way of extinction."

Howard Starkman, the Jays' vice-president of media relations, said that the existing turf at the SkyDome will have to be replaced in the next couple of years or so anyway and grass, if it can be maintained in a facility like the Dome, would be the way to go.

"We know it's do-able," Ash said.

There's a possibility major league baseball players could be competing in the Olympics by 2008, and the SkyDome would be a familiar venue to almost all of them. Minor pros took part in the 2000 Sydney Games.

Meanwhile, Craig Reedie, a member of the International Olympic Committee evaluation committee, raved about Toronto.

"It's a very special city," Reedie told the CBC. "There's something rather nice about cities beside the sea."

"And while it's not quite the sea, it's a very expansive piece of water."

Reedie, a member of the IOC and chairman of the British Olympic Association added he was very impressed with the job the Toronto bid group had done thus far.

—Steve Buffery, The Sunday Sun, March 11, 2001

DEADLINE: JULY 14
Content for September issue

Please Note: Opinions expressed in articles published in Sports Turf Manager are those of the author and not necessarily those of the STA, unless otherwise indicated.
The President’s Desk

IT is amazing how we can go from winter weather to July temperatures in a week. In other words, we switched from winter control operations to turf maintenance overnight. It was the reverse in the fall. How many of you were caught in the middle of field renovations by that first snow fall? It has been quite a year for the dreaded snow molds. Fortunately, here in Oakville it has been more grey than pink, so with a fertilizer application and a few cuts, the damage is minimal. After listening to golf course staff talk about their mold concerns when the covers are lifted, I was quite relieved to find there was no increase in mould under our own tarps.

Keynote speaker at this year’s Annual Field Day will be ex-Hamilton Ti-Cat Henry Waszczuk, host of television's Fins and Skins.

In March I attended the Atlantic Turfgrass Conference in Halifax. It was a great show with an excellent educational program. This year they added a one day sports field session which by all accounts was very well received. Thanks go out to Hugh Yorke, chairperson, for organizing the day and inviting the Sports Turf Association to be a part of it. It would be tough to beat Halifax’s hospitality. If the opportunity ever arises, I would highly recommend attending this three day event.

Pam Charbonneau, Gord Dol, Dwayne McAllister and I participated in the second joint educational workshop with the Ontario Recreation Facilities Association in Clarington, which also was held in March. With close to 50 in attendance, the day was very interactive and informative. There are a large number of people who work the winter months in arenas then come out to maintain sports fields in the spring.

Our Annual Field Day promises to be exciting! This year the event will be held on August 15 at the Waterloo Recreation Complex and RIM Millennium Park. Keynote speaker will be Henry Waszczuk, ex-Hamilton Ti-Cat and host of television’s Fins and Skins. The day also includes speaker sessions on the latest seed choices, fertilizing, irrigation and topdressing materials and techniques plus a session on worker orientation. The day books up quickly, so do not delay in registering. A registration brochure is included with this issue of Sports Turf Manager.

For further information, please contact Lee Huether at 519-763-9431, email sta@gti.uoguelph.ca. Suppliers wishing to participate should also contact Lee.

Good luck with the summer ahead. Remember, if there is any information or advice the STA can provide, please contact us. See you at the Field Day in August! ♦

"Proactive people can carry their own weather with them. Whether it rains or shines makes no difference to them. Their values are stronger than their moods."
Not only is the quantity of irrigation water available for turf important but also the quality of the water. Most turf does not require the purity of water prescribed for in-house use. However, before using other sources of water, you should have a complete water quality analysis done. Some universities, private agricultural testing companies and water-testing laboratories offer water-quality analysis.

A water-quality analysis will indicate concentrations, in parts per million (ppm) or milligrams per litre (mg/l), of most of the substances listed in the adjacent table.

Private laboratory fees can be quite expensive per sample. Generally, an interpretation of the results is provided together with recommendations. You may request additional tests for heavy metals, such as aluminium and copper. It is also desirable to know concentrations of iron, manganese and total suspended solids (TSS) to assist you in designing appropriate filtration systems.

Turfgrass Water Requirements
Turfgrasses consist of about 90% water by weight. It is an essential ingredient of all living cells. All nutrients taken into turfgrass roots from the soil are in solution. They are moved from roots to stems and leaves in solution and they function within all cells in solution. In addition, as water evaporates in spaces within the leaf, it cools the turf and its micro-environment. Eventually the water vapour diffuses out of the leaf through stomata, small pores spaced together on upper and lower surfaces.

Turfgrasses differ in both physical properties that influence water needs and physiological processes that determine water use. So, turfgrasses have a combination of structural and chemical characteristics that make them more or less efficient users of water as well as more or less drought tolerant. Naturally, the depth and extent of root development influences drought tolerance. A grass with a larger, more extensive and deeper root system has an increased volume of soil from which to obtain needed water.

— The Lawn Institute

STA ANNUAL FIELD DAY
August 15 • Waterloo Recreation Complex & RIM Millennium Park
Irrigation Scheduling Principles: Tools for Dry Times
DR. KEN CAREY, RESEARCH ASSOCIATE, GTI AND THE ENVIRONMENTAL RESEARCH CENTRE

Climate change seems to be a fact of life. Whether or not it is due to global warming, parts of the world, including Ontario, have just come through two very warm, dry years with little likelihood of significant change in the near future. With the pressures of urbanization and demand on water in general, athletic fields share with society a prospect of a drier future. Many high schools no longer activate their irrigation systems. Keys to survival will include optimizing your irrigation decisions and keeping careful records of when, why, and how much irrigation water you are using. Whether you use a state-of-the-art computer assisted irrigation system, guns or raintrains or back-of-the-envelope calculations on a bowling green, a few basic principles of irrigation scheduling will give you a good grounding to help you develop and implement a successful water use plan.

Water and Turfgrass Function
Turfgrasses are irrigated in summer in cool-season regions for a number of reasons, some having to do with the health and biology of the turf, and some with the function of the turf. The grass plants need water for most of their active metabolism and growth, taking up nutrients in solution from the soil and transpiring water in the course of photosynthesis. Turf managers need grass which is not dormant, tolerant to stresses such as traffic, and actively growing to maintain a playable surface and recover from injury – all of which requires water. Water is also important in the proper function of most management material such as fertilizers and pesticides.

Irrigation Decision-Making
In practice, the decision to irrigate will take into account all of the reasons why turf needs water. The basic requirement will be to replace the water used by the plant and lost to the atmosphere in the course of its metabolism, referred to as evapotranspiration or ET. At the same time, the soil reservoir of water can be replenished so that water is maintained “in the bank.” Turf which is stressed or recovering from damage may need extra irrigation. Syringing to control high temperatures or remove leaf wetness is an additional use of irrigation. Many management chemicals will also need to be watered in.

Input Data and Decision Tools
The turf manager has a number of important sources of information to assist in irrigation scheduling. The better and more complete the information at your fingertips, the more successful your irrigation program will be. The first category is information about the water requirements for the different turf species being managed (creeping bentgrass vs. annual bluegrass vs. Kentucky bluegrass vs. fine fescues vs. fall fescues, etc.) as well as the effects of management regimes (fertility, height of cut) and season. This is probably the most difficult information to come up with precise values for, although rough estimates in mm of water per day are available for different species and they can be corrected, again very roughly, for management and season.

The second category is weather information, including insolation (sunlight), temperature, wind, relative humidity and precipitation. Records of past weather, current conditions and forecasts are all important in an irrigation program. The third category of information is vital – records of your irrigation system. This includes not only how much water has been applied (preferably in terms of mm or inches rather than minutes) and when, but also an idea of how evenly your system delivers water to the turf.

The fourth category, good information about the rootzones that your turf is growing in, is one which is sometimes overlooked, but which is particularly important if you are scheduling irrigation on a water budget system. Soil texture, organic matter content, soil and root system depth, soil hydraulics and drainage will all affect how much water is available to the turf and how quickly a water deficit may develop.

The final special category of information is all the little peculiarities of your turf which lead to the need for “custom” irrigation. If localized dry spots or hydrophobic areas have developed due to underwatering or wet areas are present due to a spring or seep, you will need to fine tune your irrigation program to compensate.

Irrigation Scheduling Approaches
There are two approaches which are commonly taken to irrigation scheduling. They have some similarities and some important differences.

Water deficit scheduling. As the name suggests, this approach to irrigation primarily aims to deal with the deficit that turfgrass water use has produced, that is to replace the ET losses that have occurred. It relies heavily on estimates of the water use of the turf (mm/day) corrected for management, weather, time of year, etc. There are
a number of very sophisticated computer models of ET which are used by some computer assisted irrigation systems and which integrate weather data with irrigation records to schedule applications to replace ET losses. Because this type of scheduling doesn’t directly factor in the reservoir of water in the soil, it may lead to a tendency to overwater.

Water budget scheduling. This approach to irrigation scheduling is similar to water deficit systems in that the estimation of ET losses is calculated in the same way. However, the soil water is measured or estimated and the aim of the irrigation schedule is not to replace ET losses directly, but to keep the soil water at an appropriate level.

Essentially the soil water is treated as a bank balance, with withdrawals (turf water use, evaporation, drainage) and deposits (irrigation, precipitation) recorded and irrigation applied to keep an appropriate balance at all times in the soil. Understanding the characteristics of the soil is critical to this approach. Figure 1 shows the relationship between soil water status and plant activity (ET) for two soil types. Regardless of the soil type, there is a water content level (saturation) when all soil pores are full of water. At this point, roots are shut down due to lack of oxygen and eventually the plant will die.

A normal soil will drain water until only capillary pores retain water, at which point the soil is at field capacity. Field capacity varies widely from soil to soil. Plant activity and water use is high and fairly uniform at water levels from field capacity down to the point at which the water that remains in the soil is too tightly bound to be available to the roots (permanent wilting point). The wilting point also varies widely from soil to soil – below the wilting point the plant will begin to shut down and, unless water is added, will eventually enter dormancy or die.

The trick to water budget scheduling is to be able to determine where the turf is on the scale between field capacity and wilting point, and at what point to irrigate back up to field capacity. Table 1 illustrates two typical turf rootzones and their characteristics in terms of water content at critical points.

With the pressure of urbanization and demand on water in general, athletic fields share with society a prospect of a drier future.

We have been doing some research into water budget scheduling at the GTI. The typical budgeting is a day to day process as illustrated in Table 2. ET is estimated by a simple model from weather data and rainfall and irrigation inputs are recorded. The first experiments set the threshold to irrigate when soil water fell halfway between wilting point and field capacity. The budgeting approach was applied to several types of turf (creeping bentgrass greens, Kentucky bluegrass sports turf) on different rootzones.

A few interesting points have emerged:

• Water budget irrigation can significantly decrease the amount of water used to maintain some types of turf (by as much as 25% in Kentucky bluegrass sports turf in our simple experiment).

• We still need to improve our ability to identify the permanent wilting point, especially for lower maintenance turf – the bluegrass continued to grow without drought stress and the soil retained moisture long after the model predicted.

• Water budget irrigation needs to be used with care on sand rootzones on athletic fields. Because there is a tendency to underwater, the rootzone dries down more between irrigation cycles and localized dry spot may develop or worsen.

This research is ongoing. The future definitely holds a prospect of even more careful use of irrigation water. The key to successful and responsible irrigation will be complete data and records about the components of the system (soil, turf, weather, irrigation) and an understanding of the principles of irrigation scheduling.

— Green is Beautiful, June 2000
Bio-Engineering of Sports Turf Seed
LISA LEE, ERIC NELSON AND BOB HARRIMAN, THE SCOTTS COMPANY, USA

Turfgrass enhanced through biotechnology will soon be commercially available. The first wave of products that are set to radically change management practices for sports fields and golf courses are now making their way through development and regulatory review. This article was first published in Stadia magazine, January 2001, Issue 7.

Science and technology are providing us with wonderful opportunities to enrich our lives and improve the environment. It was through the continuous discovery of the basic elements of chemistry, physics and biology that impressive advances in technology have occurred. Is such a bright future in store for the common blades of grass that comprise our sports fields, golf courses, parks and lawns?

Grasses are too important and the needs are too great for us not to utilize the best advances in technology for turfgrass improvement. Biotechnology has contributed exciting new opportunities to improve turfgrass.

Turfgrass may be common but the positive impact it has on the environment and human health is anything but. Turfgrasses provide many functional, recreational, aesthetic and environmental benefits. For example, turfgrass helps reduce soil erosion and agricultural runoff and it absorbs carbon dioxide and ozone while at the same time releasing life-sustaining oxygen. Turfgrasses trap an estimated 12 million tons of dust each year and an average lawn has the cooling effect of about 10 tons of air conditioning.

Many outdoor sports and recreational activities utilize turfgrasses, including baseball, cricket, football, golf, soccer, softball, track and field, and volleyball. The surface on which the game is played contributes a great deal to the outcome of the contest, the safety of the players and the aesthetic enjoyment of the fans.

Turfgrass provides resiliency and durability that add to the quality of play as well as to the safety of the players. Natural turf provides good traction between the ground and the shoe sole. This means safe footing on sports fields, home lawns and playgrounds. In addition, turfgrass is cooler than artificial surfaces, thus it is more comfortable to play on. Injuries on natural grass and well-maintained playing fields are fewer and less severe than on other surfaces.

Plant Biotechnology at Work
There have been many technological advancements in biology in recent decades that have been pivotal to the research into the genetic engineering of sports turf seed today. Although the structure of DNA was determined in 1953, the first transgenic plant was not developed until 1984. The world had to wait another 10 years to witness the release of the first plant enhanced by biotechnology.

So how does plant biotechnology work? Simply put, it is a three step process. The first is to develop an information-containing DNA cassette. This must be inserted into a single cell before it is grown into a whole new plant.

Three major components are present in a DNA cassette. At the beginning of the cassette, a promoter sequence is needed to instruct when, where and how much of the gene is expressed. The next DNA segment comprises the functional gene that delivers the trait, and finally, at the end of the cassette, a stop sequence is required to provide signals to end the gene expression. To introduce a DNA cassette into a single cell, state-of-the-art gene insertion technologies such as gene gun, protoplast transformation and Agrobacterium transformation are commonly used to produce biotechnology enhanced plants.

After the DNA cassette is inserted into the chromosome of a single cell, the growth of cells that did not incorporate the DNA cassette are selected against, while the cell with the new DNA is nurtured in tissue culture until a whole plant is generated. Only plants that show the influence of newly inserted information and good agronomic performance are advanced to future development and possible commercialization.

Turfgrass management is under constant pressure from biotic stresses such as weeds, insects, fungi and bacteria, and abiotic stresses such as heat, cold and drought. By protecting turfgrass from such
stresses, it is possible to increase the health and performance of sports fields and golf courses.

Turfgrass biotechnology can produce transgenic plants with desirable traits to improve management practices. The tools are in place and development experts are busy at work. But what will be the first enhanced product?

Herbicide Tolerant Creeping Grass

The first turfgrass product enhanced by biotechnology is likely to be herbicide tolerant creeping bentgrass (*Agrostis stolonifera*). Over 10,000 golf courses in the US use creeping bentgrass for their greens and/or tees and fairways. Effective weed control against the grass weeds *Poa annua* and *Poa trivialis* is not currently available. By introducing the glyphosate resistant gene into creeping bentgrass, a golf course superintendent may eliminate a severe problem by simply spraying the environmentally safe herbicide Roundup®.

Roundup, the brand name for glyphosate, is a broad-spectrum, nonselective, post emergent, systemic herbicide that offers users weed control of essentially all annual and perennial plants. It has been the preferred herbicide since its first introduction in 1974 because of its effectiveness. The mode of action of glyphosate is to inhibit the enzyme EPSP (5-enolpyruvoyl-shikimate 3-phosphate) synthase and prevent plants from manufacturing three essential aromatic amino acids. Animals and humans obtain these amino acids through their diet and do not use this enzyme, thus providing a basis for specific selective toxicity only to plant species. In addition to glyphosate’s highly specific mode of action, it does not persist in the environment nor bioaccumulate in the food chain. Glyphosate is essentially immobile in almost all types of soils, where it is degraded by naturally occurring microbes.

The gene gun technology has been successfully used to introduce glyphosate resistance into turfgrasses. Glyphosate resistant turfgrass should provide a useful tool for controlling unwanted weed grass species, such as *Poa annua*, in the turfgrass of sports fields, golf course putting greens and fairways. When weeds occur in these areas, a quick herbicide spray will kill the weeds but not the glyphosate-resistant turfgrass. This useful tool will simplify turfgrass management practices and reduce the use of other herbicides. It will create a healthy stand of turfgrass with less environmental impact.

The use of herbicide-tolerant creeping bentgrass can, for instance, positively impact on current golf course management practices by:

• Offering golf course superintendents the ability to selectively control weeds which currently cannot be controlled in creeping bentgrass, such as *Poa trivialis*, *Poa annua*, quackgrass, velvetgrass, kikuyugrass and bermudagrass;

• Providing improved turf management, resulting in higher uniformity and quality of turf with increased aesthetics and playability;

• Allowing the use of an environmentally acceptable herbicide that also reduces workers’ exposure to the more toxic herbicides;

Supreme-Green™ TURF COVER

The multi-purpose turf cover ideal for natural turf environments such as baseball, soccer and football fields, etc.

BENEFITS

• accelerated seed germination • encourages root development • early spring green-up

• delays dormancy in fall • winter protection: reduces frost and ice damage • turf repairs

• available in any size

Covertech Fabricating Inc.

Buy Direct From the Manufacturer!

Call 1-800-837-8961

www.covertechfab.com • sales@covertechfab.com
• Reducing herbicide usage through the increased flexibility to treat only as needed for weeds;
• Reducing fungicide, insecticide, water and fertilizer usage through the elimination of Poa annua and Poa trivialis;
• Eliminating the need for growth regulators to control Poa annua.

Regulatory Review Process
Before the benefits from products enhanced through biotechnology can be enjoyed, they must be vigorously examined and pass a thorough review by the Environmental Protection Agency and the US Department of Agriculture. The process can be summarized by addressing the following five issues:
• To determine that the product exhibits no plant pathogenic properties;
• To show that the product is no more likely to become a weed pest than traditional breed varieties;
• To prove that the product is unlikely to increase the weediness potential for any other cultivated plant or native wild species with which the product could interbreed;
• To ensure that the product is unlikely to cause damage to processed agricultural commodities;
• To show that the product is unlikely to harm organisms beneficial to farming and agriculture.

Data to address the topics above is developed over several years and in multiple locations. The analysis determines if the enhanced turfgrass is substantially equivalent (except for the introduced trait) to other turfgrass cultivars currently on the market. Herbicide tolerant creeping bentgrass is currently being examined with over 50 tests in 19 states by scientists from several disciplines and universities. This product may reach the sports market as early as 2003, dependent upon additional product testing and review by the regulatory agencies.

Better Turfgrass for Sports
Over 90 field test notifications have been acknowledged by the US Department of Agriculture APHIS since 1994. While most of the activity is focused on creeping bentgrass (75 notifications), a growing number of notifications are being submitted for Kentucky bluegrass (14 notifications), bermudagrass (2 notifications), tall fescue (2 notifications), and perennial ryegrass (1 notification). The traits being studied include herbicide resistance, modified growth rate, fungal disease resistance, drought tolerance and salt tolerance.

It is possible that one day soon, there will be a well-maintained stand of turfgrass that needs less watering, less fertilization, less mowing and no supplemental protection from insects or disease. The continued activity of turfgrass scientists, combined with the growing knowledge of gene function, provide great promise for impressive advances in turfgrass biotechnology to provide these valuable management tools. In addition to golf courses benefiting from these improvements, in five to 10 years biotechnology enhanced turfgrasses could provide a broad spectrum of impact on other sport turf fields such as football, soccer or baseball fields, or wherever natural turfgrass is used.

Lisa Lee, Ph.D. is senior scientist in Genetic Engineering, Eric Nelson, Ph.D. is senior scientist in Seed Development and Production and Bob Harriman, Ph.D. is vice president of Technology Development at The Scotts Company, one of the leading worldwide suppliers of professional turf management products.

Welcome New Members to the Sports Turf Association of Ontario

John Starr
Vice President
Covertex Fabricating Inc., Etobicoke, ON

Mark Gowland
Supervisor, Facilities and Parks, Corporation of Halldimand County, ON

Susan Mentis
Associate, Arborist
Steven Popovich Associates Inc., Mississauga, ON

John Iococca
Engineered Turf Soils & Materials Limited
Kitchener, ON

Terry Egan
Parks Operations Supervisor
City of Ottawa, ON

Nancy McMinn
Parks Superintendent City of Charlottetown, PEI

Rob Rashotte
City of Belleville, ON

Kenneth J. Hoyle
Landscape Architect Harrington and Hoyle Ltd. Cambridge, ON

Brian Hanna
Lead Hand City of Ottawa, ON

Allan Fraser
Parks Director Town of Comox, BC

Maureen Sinclair
Division Manager Parks Operations and Development City of Brantford, ON

Jeff Silverthorn
Landscape Architect City of Ottawa, ON

Paul Nicolson
Dol Turf Restoration Ltd. Innisfil, ON

Mark Meloun
Leadhand Horticulture Operations City of Brantford, ON

Rick Robinson
Utility Person II Town of Oakville, ON

Stephen Popovich
Principal
Steve Popovich Associates Inc., Mississauga, ON

SPORTS ASSOCIATION TURF
Resource management plays an increasingly critical role in sports field planning. Water, labor and energy-efficiency all impact the design of these sites.

At Hunter Industries we feature an expanded line of rotors, sprays, valves and central control systems with technically-superior enhancements for improved water management.

For more information on an efficient Hunter system, contact us for your free copy of the Hunter Water Management Kit with ideas on how you can incorporate new water-saving techniques into your sports field plans.

At Hunter Water Management is Our Mission.
Thunderstorms and Tornadoes
EXPLORING THE MYSTERIES OF WEATHER

Tornadoes
These violent, whirling winds are nature’s most devastating forces. They vary from a narrow path 100 feet wide to a howling black cloud that can stretch as long as a mile. Tornadoes are usually small and do not travel far, but the area they cover is destroyed with often death dealing thoroughness. A deafening roar announces a tornado’s approach and everything in its path is generally destroyed completely. Often started by thunderstorms, a tornado begins when a violently rotating column of air under a storm makes contact with the ground – whether you see a funnel or not. Initially, just dust is stirred up, but a column soon takes shape. At its strongest, a tornado usually has a visible funnel and a debris/dirt cloud which holds together in a controlled shape. At its weakest, the funnel shrinks, becomes wobbly, and disappears, leaving only a dusty reminder to disperse slowly in the air.

In the US, several Severe Storm Centers forecast tornadoes year round. In Canada, most tornadoes occur in spring and summer. During this period, the northern hemisphere gradually faces the sun’s rays more directly and for a longer time each day. The sun quickly heats surfaces that have been cooler all winter. Warm moist air pushing up from the Gulf of Mexico begins to push rapidly northward where it meets much cooler polar air masses moving south. When these air masses of contrasting temperatures and humidity come in contact, thunderstorms or their more violent offspring, tornadoes, occur.

In operations rooms across the country, technicians have the aid of weather balloons, ground reports and satellite photographs to help them look for potential twisters. Doppler radar is now used to great effect and is able to give a warning up to 30 minutes before a storm hits.

Thunderstorms
As mentioned above, when warm moist air is pushed violently upward in the atmosphere, a thundercloud rapidly develops. The movement of the warmer air to colder regions above sets off powerful updrafts in the thundercloud. These air currents release energy, sometimes forcefully, in the form of heavy rain, hail, lightning, strong winds and occasionally tornadoes.

The simplest description is that summer storms act as a giant instrument for distributing the sun’s heat. At the equator, the earth receives more energy from the sun than it loses into the atmosphere. At the north and south poles, more energy scatters into the atmosphere than is received from the sun. Without the winds, the tropics would be unbearably hot and the polar regions unbearably cold. These winds that blow in huge revolving belts around the earth convey the excess heat from the equator toward the poles and cold pole air back to the tropics.

In the northern hemisphere, the jet stream, a fast moving belt of wind, flows from east to west between 5-10 miles above the earth in a looping pattern similar to a huge waving ribbon. As it travels around the earth, the stream causes great eddies called high pressure systems that rotate clockwise between its looping waves.

Between the “highs” are low pressure systems that move in the opposite direction. As the highs and lows move across the middle latitudes with the prevailing westerly winds, they bring alternating systems of fair weather and storms.

In conclusion, storms have an enormous impact on human lives and property. They do however serve a needed and beneficial function in the overall weather pattern but sometimes are terribly destructive. Environment Canada states June is tornado month, when on average, most tornadoes occur. During a tornado, go to the smallest interior room or stairwell on the lowest floor of the building (the bathroom or basement is often the best choice.)

— summarized by Michael Bladon, sources: “Powers of Nature,” National Geographic Society, Washington, DC; Environment Canada

A Rough and Ready User’s Guide to the Probability of Precipitation

Probabilities

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>No precipitation even though it may be cloudy.</td>
</tr>
<tr>
<td>10%</td>
<td>Dry weather with only one chance in ten of snow or rain falling.</td>
</tr>
<tr>
<td>20%</td>
<td>Dry weather still expected.</td>
</tr>
<tr>
<td>30%</td>
<td>Go ahead with your picnic, boating or ski plans but you may have to take shelter.</td>
</tr>
<tr>
<td>40%</td>
<td>An umbrella is recommended. Make alternate plans for outdoor activities that are susceptible to rain. Not a good day to pave the driveway. Keep your fingers crossed!</td>
</tr>
<tr>
<td>50%</td>
<td>It’s even Steven on whether it snows or not. Be prepared for all eventualities.</td>
</tr>
<tr>
<td>60%</td>
<td>Want to water your lawn? The odds are favourable that Mother Nature might give you some help.</td>
</tr>
<tr>
<td>70%</td>
<td>Suggest cancellation of outdoor events. The chances for dry weather have shrunk to three in ten.</td>
</tr>
<tr>
<td>80%</td>
<td>Wet weather likely. Make appropriate plans.</td>
</tr>
<tr>
<td>90%</td>
<td>The occurrence of precipitation is a near certainty. Venture out if you enjoy walking in the rain or playing in the snow.</td>
</tr>
<tr>
<td>100%</td>
<td>Precipitation is a certainty.</td>
</tr>
</tbody>
</table>

—“Probability of precipitation: improving the weather forecast with the aid of numbers,” Environment Canada Atmospheric Environment Service Fact Sheet, 1992
Seeding is Believing
The Quick Slit Seeder follows the ground contours accurately and plants seeds at a constant depth in its own prepared mini seedbed. This unit is also a cultural tool in that it acts as a grass root pruner by cutting or breaking the grass plant roots. For the survival of the grass plant, it must immediately put all of its resources into growing new roots, resulting in stronger plants with better root structures.

Quick Slit Seeder
- Quick germination in higher yields.
- Easy to calibrate.
- Minimum surface disturbance.
- Sowing varieties include (but not limited to) all types of seed, Grain, Pesticide & Fertilizer Prills, Pelletized Lime, Diazinon 5.
- Coverage Rates: 4lbs - 500lbs/acre.
- Insure seed/soil contact while maintaining constant seed depth.
- Save 25% of seed with accurate calibration.

TDS Drainage Systems Ltd.
Turf Drainage Professionals
- Complete Design and Installation
- Specializing in Slit Drain Systems for Sports Fields and Golf Courses
- Drainage Specialists for over 25 years
- Automatic Laser Controlled Equipment
- Guaranteed to Provide the Results You Need

Contact us:
33839 Saintsbury Line, P.O. Box 237, Lucan, ON N0M 2J0
- E-mail: tdsturf@on.aibn.com
- Website: www.tdsdrainage.com
- Office: 519-227-0731 • Mobile: 519-878-8918
- Fax: 519-227-1670

Proud Members of CGSA • OGSA • STA

ATHLETIC FIELD COVERS
TURF GROWTH BLANKETS
Baseball/Football WALL & RAIL PADDING
Everything you need to protect natural turf, avoid rainouts or help safeguard against player injury.

For complete information, please call 1-800-387-5808
Rain Bird '7005' Rotor
NEW PRODUCT LAUNCH BY VANDEN BUSSCHE

APRIL 26, 2001. Rain Bird has launched a new, rugged performer for commercial and sports field irrigation applications and named it the “7005.”

This versatile sprinkler has a durable rubber cap, a pop-up height of 5 inches (125 mm) (allowing it to clear longer mowing heights), and it can distribute water up to 70 feet (21.34 metres) in radius.

There are many vandal resistant features built-in to the “7005” including “Sneaker Armor,” “Memory Arc,” a non-strippable drive mechanism, and an available stainless steel riser. “Sneaker Armor” construction withstands persistent kicks from vandals resulting in fewer repairs and the avoidance of potential erosion damage. “Memory Arc” returns a part-circle sprinkler’s rotation to the predetermined setting after a vandal has twisted a sprinkler out of rotation while the non-strippable drive mechanism keeps the sprinkler rotating. The “7005” is very versatile. This rotor can perform part circle or full circle operation with ease and offers interchangeable nozzles ranging from 4 US gallons per minute (GPM) to 22 US GPM.

A welcome addition to the fine line-up of Rain Bird rotors, the “7005” promises to deliver many years of trouble free operation in green landscapes and quality sports fields.

Contact Information: see ad on page 15.
PLANT PRODUCTS CO. LTD., Canada’s leading supplier to the horticulture and professional turf care markets, is pleased to announce the availability of Crown III Crumb Rubber. For years, turf managers have sought an effective product for use on high-wear areas. Crown III Crumb Rubber is the solution. It’s non-abrasive, minimizes injury to the sensitive crown tissue, and reduces scarring of the grass blade. The rubber absorbs and dissipates the impact from traffic, reducing any underlying soil compaction. It’s ideal for wear spots on golf courses, athletic fields, parks and other high-traffic areas. Crown III Crumb Rubber lessens resodding costs by reducing turfgrass wear, lengthening the growing season, and reducing soil compaction. Crown III Crumb Rubber also helps conserves water and insulates against winterkill. For more information about Crown III Crumb Rubber, call Plant Products Co. Ltd. at 905-793-7000, 1-800-387-2449 or email us at turf@plantprod.com.

Announcement
Plant Products Co. Ltd. is pleased to announce the appointment of Mr. Jason Ireton to the position of Sales Representative - Turf Division.

Jason comes to us with years of practical turf experience most recently with Conestoga Golf Club as the superintendent. Jason will be responsible for sales and service to the turf markets in London, Kitchener, Guelph and the Niagara Peninsula.

Please join me in welcoming Jason to our team. Jason will be calling on his customers shortly. However, if you need assistance or information in the meantime, please do not hesitate to contact Jason or myself at our office.

— Harold Van Gool, Sales Manager

"Simplify your life. Don't waste the years struggling for things that are unimportant. Don't burden yourself with possessions. Keep your needs and wants simple and enjoy what you have. Don't destroy your peace of mind by looking back, worrying about the past. Live in the present. Simplify!" — Henry David Thoreau
THE BERGAL VAC + 800-900
WITH VACUUM

CHARACTERISTICS:

- Picks-up aeration cores on fairways
- Cleans parking lots
- Picks-up wet or dry leaves
- Picks-up soft drink cans
- Picks-up grass clippings wet or dry
- Picks-up small branches
- Fast unloading with high angle, hydraulic hopper tilt
- P.T.O. and hydraulic system

Contact your Turf Care sales representative today for a no-cost, no-obligation demo at your convenience.

190 Britannia Rd. E., Unit 22
Mississauga, ON L4Z 1W6
Ph: 905-890-6290
Fax: 905-890-5598

140 Milner Ave., Unit 24
Scarborough, ON M1S 3R3
Ph: 416-298-2101
Fax: 416-298-8758

2575 Delzotto Ave., Unit D
Gloucester, ON K1T 3V6
Ph: 613-822-1881
Fax: 613-822-2099

1110 Dearness Drive, Unit 13
London, ON N6E 1N9
Ph: 519-668-7664
Fax: 519-668-3722

TURF CARE PRODUCTS CANADA
200 Pony Drive, Newmarket, ON L3Y 7B6 • Tel: 905-836-0988 • Fax: 905-836-6442 • www.turfcare.ca