“Winterkill” is a general term that is used to define turf loss during the winter. Winterkill can be caused by a combination of factors including crown hydration, desiccation, low temperatures, ice sheets and snow mold. Because of the unpredictability of environmental factors and differences in other factors such as surface drainage, the occurrence of winterkill on turf is variable and can vary greatly from location to location.

Crown Hydration

In general, annual bluegrass (*Poa annua*) is the most susceptible to crown hydration injury. During the warm days of late winter, annual bluegrass plants start to take up water (hydrate). Potential for injury exists when a day or two of warm daytime temperatures in late winter is followed by a rapid freeze. The most common time for winterkill associated with crown hydration and refreezing to occur is during the late winter and early spring when there is snowmelt or rainfall and then refreezing of the water that has not drained away. Crown hydration is a problem during these events because ice crystals can form in the crown of the plant, rupture the plant cells and ultimately cause the plant to die. Annual bluegrass is more susceptible to crown hydration injury than creeping bentgrass because it emerges from dormancy and begins taking up water. Creeping bentgrass remains dormant longer and, therefore, does not take up water and is not as susceptible to crown hydration injury during the late winter.

Desiccation

Winter desiccation is the death of leaves or plants by drying during winter when the plant is either dormant or semi-dormant. Desiccation injury is usually greatest on exposed or elevated sites and areas where surface runoff is great (Beard 1973). Winter desiccation injury to turfgrass in Michigan is normally rare, though sites similar to those described above can be prone to desiccation injury on a regular basis.

Low-temperature Kill

Low-temperature kill is caused by ice crystal formation at temperatures below 0º C (32º F). Factors that affect low-temperature kill include hardiness level, freezing rate, thawing rate, number of times frozen and post thawing treatment (Beard 1973). Soil temperature is more critical than air temperature for low-temperature kill because the crown of the plant is in the soil. It is difficult to provide absolute killing temperatures because of the numerous factors involved. Beard (1973) provided a general ranking of low-temperature hardiness for turfgrass species that were autumn-hardened.

Ice Sheets

Ice sheets are often blamed for killing turf when, in fact, it is crown hydration and subsequent refreezing that has resulted in the kill. The reason for the confusion is that as snow melts and refreezes creating ice sheets, the ice sheets are often in poorly drained areas where crown hydration can occur because of the standing water. As the ice sheet melts away, the area damaged closely mirrors where the ice occurred, and therefore, the conclusion is that ice sheets caused the kill. Beard conducted research on ice sheets on three turfgrass species: Kentucky bluegrass, creeping bentgrass and annual bluegrass. Kentucky bluegrass and creeping bentgrass survived 150 days of ice cover without significant injury; annual bluegrass was killed somewhere between 75 and 90 days of ice cover (Beard 1998). The author concluded that cause of death for the annual bluegrass was most likely from toxic gas accumulation under the ice sheet.

Snow Mold

The two diseases commonly called snow mold are *Typhula* blight (gray snow mold) and *Microdochium* patch (pink snow mold). Gray snow mold requires extended periods of snow cover; pink snow mold can occur either with or without snow cover. If snow mold injury is a recurring problem, preventive fungicide applications are the best control option.

Steps in Recovery

To assess if damage has occurred, samples can be taken from turf areas, moved inside and placed in a warm, sunny area to see if the turf greens up. If there is no green-up within a couple of weeks, the turf was killed. Reestablishing turfgrass in damaged areas can be very challenging.
in the spring because of the cool, cloudy conditions that often persist. Depending on the extent of damage, either seeding or sodding may be necessary to facilitate recovery.

In areas where the turf was killed in a manner that left well-defined margins between dead and living turf, it may be feasible to strip dead turf and sod the area. In areas where the kill was more scattered, it may be easier to seed the area. Tools such as the Job-Saver aerator attachment, which produces numerous small, shallow holes, increase the success of an inter-seeding program. The interseeding process should continue weekly until the damaged area has recovered completely.

Keys to success for renovating winterkilled areas are to divert traffic from newly seeded areas, apply light fertilizer applications to stimulate growth, and irrigate to ensure that the seedbed or sod is moist throughout the establishment period.

Literature Cited

GENERAL RANKINGS
of low-temperature hardiness for autumn-hardened turfgrasses

<table>
<thead>
<tr>
<th>Low-temperature hardiness</th>
<th>Turfgrass species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>Rough bluegrass, Creeping bentgrass</td>
</tr>
<tr>
<td>Good</td>
<td>Kentucky bluegrass, Colonial bentgrass</td>
</tr>
<tr>
<td>Medium</td>
<td>Annual bluegrass, Tall fescue, Red fescue</td>
</tr>
<tr>
<td>Poor</td>
<td>Perennial ryegrass</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS WELCOME
Contact Lee Huether at the STA office if you are interested in contributing to the Sports Turf Manager. We appreciate feature-length articles, column ideas and newsworthy items. This is a great way to both support your professional association and enhance your resume!