Tile systems have been known to fail when sediment enters the pipe through the crack between abutting clay tile or through the slots in the more common corrugated plastic tube. Many architects design a system which has a geotextile cloth envelope or covering on the tile to prevent the infiltration of sediment into the tile. In many cases, the use of the envelope not only increases the cost of the system, but may lead to the very clogging of the system for which it was intended to prevent.

In most soils, the wide distribution of particle sizes from clay through sands and small gravel form natural bridges of particles over the entry points of water into the tile. Soils, however, which are of a relatively uniform particle size, are unable to form these natural bridges and are considered to be unstable when saturated with water; the condition which exists when water is about to flow into the tile line. These soils have been identified as very fine sands, loamy fine sands, fine sands, and silts. Clays would be expected to cause even greater problems, however, because of the plate-like nature of clay particles. Due to strong cohesive forces between the particles, clays react similar to bridging soils.

Certainly an envelope should never be used in a drainage system for USGA design of a sports field. The fine material that will wash out of the sand root zone will, with time, clog the pores in the envelope. It is wiser to ensure that the tile lines have sufficient grade so that they are self-flushing, which will ensure the fines are washed out of the system when a flush of water runs through the line after a heavy rain. A grade of greater than five percent particles equal to or less than the sieve size versus the particle diameter. From this graph, the size of particles above which 60% of the particles lie and the particle size below which 10% of the particles lie is determined. The uniformity ratio or coefficient is calculated as \(D_{10}/D_{60} \). Where the ratio is less than five, an envelope should be considered. If the ratio is greater than five, there is no need for an envelope.

Figure 1 is an illustration of the particle size distribution curve for several soils. Soil 1 represents a silt soil where the particles fall primarily in the silt and very fine sand categories resulting in a uniformity index of 3.9. The drain pipe used in this soil should have an envelope. Soil 2 is a sandy loam which has a wide distribution of sand, silt, and clay size particles to give a uniformity index of 12. The wide spectrum of particle sizes will provide the natural bridging effect and will not require an envelope. Soil 3, with a uniformity index of 9.3, is a sand used for the sand root zone of a soccer field and will not require an envelope.

There is a rough approximation test which can be performed on site to determine whether a soil is unstable and requires an envelope. The test requires three 105 x 175 mm juice cans. The tops are removed from all three cans. The bottom is removed from one. The second can has only the centre of the bottom removed to leave a 10 mm wide retaining ring at the edge. These two cans are soldered together to form a tube. A 95 mm diameter piece of wire screen which has 2 to 3 mm openings is placed on the retaining lip in the tube. The third can is marked at the 165 mm depth and used for a measuring device. The moist soil in question is placed on the screen and packed to a 25 mm depth by tamping to give a compaction similar to that in the native condition. The third can is filled to the 165 mm depth with water and it is gently poured on the soil surface. Placing a long drinking straw across the mouth of the can and pouring the water down the side of the straw will introduce the water onto the soil with minimal disturbance.

If the soil does not wash out the bottom after standing undisturbed for 15 minutes, the drained pipe probably does not require a filter envelope. It must be realized, however, that the procedure is a quick test and highly subject to how the soil is packed on the screen. A uniformity coefficient derived from a particle size distribution analysis is the preferred procedure.

When drains are initially installed, the discharge water may be seen to carry a significant amount of sediment. Do not panic. With time, the amount of sediment will decline because the natural bridging of soil particles across the slits in the drain is taking place and within a year or so the water, should run clear.

A few dollars spent on a soil analysis, followed by the interpretation of the results, will save you money for an unnecessary cost addition to the tile system and the potential for reduced performance in the future.
Figure 1: The particle size distribution curves for three soil samples having different uniformity indexes and envelope requirements. Please note that for interpretative purposes, the data must be plotted on a logarithmic scale.

Soil 1 \(\frac{D_{60}}{D_{10}} = 0.0097/0.0025 = 3.9\)
Soil 2 \(\frac{D_{60}}{D_{10}} = 0.018/0.0015 = 12\)
Soil 3 \(\frac{D_{60}}{D_{10}} = 0.28/0.03 = 9.3\)

A - Clay
B - Silt
C - Very Fine Sand
D - Fine Sand
E - Medium Sand
F - Coarse Sand
G - Very Coarse Sand
H - Gravel

"People of character don't allow the environment to dictate their style." — Lucille Kallen

Vanden Bussche Irrigation & Equipment Limited
Irrigation Specialists for More Than 45 Years

R.R. #4, Milton, ON L9T 2X8
Metro Toronto: (416) 798-4745
Milton: (905) 875-4545 or 1-800-263-4112
Fax: (905) 878-4501

Distributors and designers of sprinkler systems to the turf grass industry and the Ontario distributor of Rain Bird products.

Call us. We can meet your irrigation needs.

Marine Products Inc.

Soil products designed for baseball, cricket and tennis, along with groundskeeping tools and accessories.

MAR-CO CLAY PRODUCTS INC.
Box 67, Hwy. 86, Wallenstein, ON NOB 2S0
Tel. 519-669-3657 Fax: 519-669-8799

PICKSEED®
good things growing...

Charlie Pick
Lindsay, ON
Car: 705-878-7604

Doug MacMillan
Lindsay, ON
Car: 705-328-6663

Larry White
London, ON
Car: 519-649-8777

Peter Coon - Central Ontario
Bill Carnechan - West Ontario
Victor Freiberg - East Ontario
Chuck Demers - North Ontario

Rain Bird

PREFERRED BY PROFESSIONALS WORLDWIDE®

Oseco, inc. “The turfseed specialists”

210 Wanless Dr., Brampton, Ontario L6V 1A1
Phone 905-846-5080 or 1-800-668-5080
Fax 905-846-6909

Sports Turf Manager • 13