Final Report

to

The United States Golf Association

A Multigene-Transfer Strategy to Control Pathogens
and Enhance Environmental Stress Tolerance in
Creeping Bentgrass

From

Mariam Sticklen
Professor
Crop & Soil Sciences Dept.
102 CIPS
Michigan State University
East Lansing, MI 48824-1311
Tel: (517) 353-9140
FAX: (517) 353-1698

Joseph Vargas
Professor
Bot. & Plant Pathol. Dept.
206 CIPS
Michigan State University
East Lansing, MI 48824-1311
Tel: (517) 353-9430
FAX: (517) 353-5598

Note: Dr. James Baird was one of the Co-PIs of the proposal. However, he has not been
involved with this final report because he is no more at MSU.
Executive Summary

Previously, Sticklen's research team developed creeping bentgrass clones that contain the glufosinate ammonia (Liberty or FinaleTM) resistant herbicide, a chinases gene, a proteinase inhibitor gene, and a drought and salt tolerance mannitol dehydrogenase (mtID) gene. Studies have shown that the chinase genes can make transgenic plants resistant to pathogenic fungi such as R. solani, etc..

Our research team confirmed that glufosinate ammonia has fungicidal as well as herbicidal properties. Therefore, we have been able to simultaneously control weeds as well as turfgrass pathogens (mainly Sclerotinia ulnogaral and Rhizoctonia solani) by spaying this herbicide on transgenic creeping bentgrass expressing the bar gene under greenhouse conditions.

Research by Dr. Vargas laboratory has shown two out of 44 independently transformed lines of our transgenic creeping bentgrass, transcribing the elm chinase gene, has improved resistance of plants to R. solani under controlled environmental conditions.

Experiments performed by Dr. Baird's laboratory has shown no translation of our transcribed mtID gene in certain lines of transgenic turfgrass. Of course, none of these transgenic lines tested for western blotting also showed accumulation of mannitol, as a sign for drought and/or salt tolerance. With no surprise, none of these transgenic lines tested showed any drought and/or salt tolerance either. Since we made synthetic peptides and produced extra antibodies to the MTLD protein, we plan to test the rest of mtID-transcribed transgenic lines for expression of MTLD protein by western blotting. If positive, then once again we will perform mannitol test and will also test plants for drought and/or salt tolerance. Should MSU have a new turfgrass physiologist in place soon, this work will be performed with collaboration of the new physiologist.

Introduction

Creeping bentgrass (Agrostis stolonifera L.) is a desirable species for use on golf courses throughout most of the United States due to its tolerance of low mowing heights, density, and other turf quality characteristics that enhance the game of golf. Whether or not it is grown within or beyond its zone of adaptation, creeping bentgrass is limited by environmental stresses associated with drought and temperature extremes, and by pathogenic diseases that prey on stressed turf.

The most promising approach to combating the major biotic and abiotic stresses associated with creeping bentgrass and other turfgrasses is through the development of transgenic plants. These plants are created by the introduction of genes (fundamental units of heredity) into existing deoxyribonucleic acid (DNA), the primary carrier of genetic information. Thus, it would be advantageous to insert genes into creeping
bentgrass that express greater resistance to stresses induced by extreme environmental conditions and pathogens.

Multi-Gene Transformation Studies
Initially, Dr. Sticklen's laboratory developed a genetic engineering system for creeping bentgrass using a marker (gus) gene to determine success of gene incorporation (Zhong et al., 1991; Zhong et al., 1993) into turfgrass. Then, under the financial support of the United States Golf Association, her team successfully incorporated a gene for resistance to glufosinate (FinaleTM), a non-selective herbicide (Liu, 1996). Additional research conducted showed that glufosinate has fungicidal, in addition to herbicidal, properties. As a result, we have been able to simultaneously control weeds and diseases caused by the pathogenic fungi *Rhizoctonia solani* (brown patch) and *Sclerotinia homoeocarpa* (dollar spot) by spraying the herbicide on transgenic creeping bentgrass expressing this gene (Liu et al., 1998).

Our next challenge was to insert a chitinase gene cloned and characterized in Sticklen’s laboratory into creeping bentgrass. Chitinases are enzymes (proteins) that degrade chitin, a structural polysaccharide of fungal cell walls and insect exoskeletons. Since fungi cause the major pathogenic diseases of turfgrasses, expression of the chitinase gene in creeping bentgrass is expected to promote disease control via chitin degradation. Studies have shown that chitinase genes can make transgenic plants resistant to pathogenic fungi such as *R. solani* (Graham and Sticklen, 1994). The Sticklen laboratory team cloned and characterized a full-length chitinase gene which contains the necessary chitin-binding domain from American elm (*Ulmus americana*) (Hajela and Sticklen, 1993; Sticklen et al., 1993; Hajela et al., 1993). Then our team constructed a plasmid containing this chitinase gene regulated by the 35S promoter, and successfully inserted this chitinase gene into creeping bentgrass (Chai, 1997). The collaboration was made with Dr. Vargas for laboratory and greenhouse levels inoculation studies of transgenic plants. These studies showed that two out of 44 independently transgenic turfgrass genetic lines were resistant to *R. solani*. The studies were repeated at the laboratory and the greenhouse levels, and results were submitted to Phytopathology as two out of 44 transgenic lines showed 3 to 5 fold resistance to *R. solani* (Chai et al, 2000; Green et al, 2000). A more detailed report of the screening of transgenic plants is shown below.

Comparisons of disease resistance in different independent lines of transgenic creeping bentgrass transcribing the chitinase gene
Seven transgenic lines (711, 7204, 7205, 7208, 815-1, 815-7, 9106, 910-10, 9601, 9603, & 9606) of *A. palustris* carrying a selectable marker for bialaphos resistance (*bar* gene), and the class I basic elm chitinase (pHS2) were screened for resistance to *Rhizoctonia solani* AG 1-Ia (casual agent of brown patch) and *Sclerotinia homoeocarpa* (casual agent of dollar spot) under controlled environmental conditions. Parental cultivars of *A. palustris*, Penncross and Putter, and a transgenic line of each parental cultivar containing only the *bar* gene were included as controls. Growth, color, and turfgrass quality varied within the eleven transgenic creeping bentgrass lines examined. Only lines 711, 815-1,
9603, 9606, and 9604 were equivalent in turfgrass quality compared to their parental cultivars. Coarse texture or low shoot density resulted in poor turfgrass quality in the other transgenic lines.

Brown patch screen. Controlled environment experiments were conducted 15 May through 27 July, 1998 to assess levels of *R. solani* resistance among the transgenic lines and their parental cultivars as discussed by (Green et al., 2000). To summarize our findings, two transgenic lines 711 and 9603 had significantly (P < 0.01) improved resistance to *R. solani* as compared to their parental cultivar, Penncross, and the Penncross derived bar-only line 9604. Transgenic lines 711 and 9603 were found to have approximately a 3- and 1-fold improved level of resistance to *R. solani* AG 1-1a, respectively, when compared to Penncross. Other transgenic lines derived from the creeping bentgrass cultivars Penncross and Putter did not provide significantly improved resistance to *R. solani*.

Dollar spot screen. Controlled environment experiments were conducted 12 February through 15 May 1999 to assess levels of *S. homoeocarpa* resistance among the transgenic creeping bentgrass lines and their parental cultivars. None of the transgenic lines containing the chitinase gene showed improved levels of resistance to the dollar spot pathogen as compared to their parental cultivars. Whereas, four of the transgenic lines carrying the chitinase gene (910-12, 9601, 9603, 9606) showed reduced levels of resistance to *S. homoeocarpa* as compared to their parental cultivar. Failure of the pHS2 chitinase gene to provide improve resistance to this ascomycete fungus, agrees with other literature where differences in fungal cell wall composition appear to inhibit the effective suppression of some fungal pathogens by the chitinase enzyme. These reports suggest that variation in carbohydrates and proteins on the fungal cell wall surface protect the chitin in the cell wall from the chitinase enzyme.

Testing drought tolerance of transgenic creeping bentgrass
In addition to our herbicide and pathogen resistance transformation studies, we successfully incorporated one drought and salt resistance gene (mannitol 1-phosphate dehydrogenase (*mtID*)) regulated by a monocot specific promoter and intron (*Act1* promoter) into creeping bentgrass (Chai,1997). This portion of the project was in collaboration with Dr. James Baird. the former faculty member of the Department of Crop and Soil Sciences at Michigan State University. The *mtID* gene is associated with drought and salinity tolerance in plants (Tarczynski et al., 1992, 1993). Dr. Sticklen's laboratory also confirmed that this gene (*mtID*) too was incorporated and transcribed in transgenic creeping bentgrass. Since Dr. Wu laboratory at Cornell University transferred this *mtID* gene regulated by the same promoter (rice *Act1*) into rice and confirmed that transgenic rice had become tolerant to both drought and salt (Xu et al., 1996), we conducted studies to see whether our transgenic turfgrass transcribing the mtID gene were tolerant to drought or salt. In our studies, Dr. James Baird's laboratory tested several of our transgenic lines, and found no resistance of these lines to drought or salt. We also
designed synthetic peptides and produced antibodies against the MTLD protein. Dr. Baird's student conducted few western blots from our transgenic lines in which tall showed not translation of our transcribed mlLD gene in transgenic turfgrass. Interestingly, none of these transgenic lines tested for western blotting showed accumulation of mannitol, as a sign for drought and/or salt tolerance. Since our northern blots clearly show the transcription of mlLD gene in several of our transgenic lines, we plan to use the rest of antibodies and test other transgenic clones that have transcribed the mlLD gene to see whether any of the other lines show the translation of the mlLD gene.

Improving the Expression of Genes in Creeping Bentgrass
We constructed a plasmid containing the chitinase gene and the rice Act1 promoter and intron. The objective of this part of the proposal was to see whether we could improve the level of expression chitinase gene in turfgrass, as compared to the level of its expression under control of the 35S promoter. Then, we genetically engineered creeping bentgrass with the plasmid containing the rice Act1 promoter. To date, we have not found a clear result showing that there are much expression level differences between these two promoters in creeping bentgrass. Of course, we have produced and tested a small number of transgenic turfgrasses with the plasmid containing the rice Act1 promoter.

Cross Breeding of Certain Lines of Transgenic Turfgrass
Michigan State University and Pure Seed Testing, Inc. entered into a license agreement whereby the Oregon Research Corporation conducted further testing of transgenic plants developed at Michigan State University. This private sector also cross bred our transgenic lines with their inbred lines and produced hybrid seeds. The Pure Seed Testing, Inc. also studied the distance needed to be kept between transgenic and the non-transformed turfgrass fields in order to avoid transfer of transgenic pollen grains to the surrounding fields. It was unfortunate that anti-biotechnologists destroyed the Pure Seed Testing, Inc. transgenic fields.

Personnel Trained Under the Financial Support of the USGA

1. Dr. David Green Postdoctoral Associate Dr. Vargas's Lab.
2. Ms. Susan Redwine MS Student Dr. Baird's Lab.
3. Dr. Chien-An Liu Ph. D. Student Dr. Sticklen's lab.
4. Dr. Benli Chai Ph. D. Student Dr. Sticklen's Lab.
5. Mrs. Robabn Sabzikar Technician Dr. Sticklen's Lab.

Please note that partial salaries of the above personnel were paid through the USGA grant.
Patents or Provisional Patent Applications Filed

Conclusions
At conclusion, we developed a very reliable system of genetic engineering for turfgrass, transferred multi-genes in plants, and tested transgenic plants for herbicide, disease and drought tolerance. Cross breeding was performed by a private sector that confirmed the integration and expression of transgenes into the company's commercial lines.

It is ashamed that biotechnology researchers and biotechnology private sectors have been disrespectfully blamed for their research programs. We believe that it is only a matter of time to educate public in understanding and appreciating the applications of biotechnology, especially the application of biotechnology to improve a non-food/non-feed crop such as turfgrass.

Acknowledgement
At the end, we would like to sincerely appreciate the financial and moral supports of the USGA. This support resulted in training of several graduate students, technicians, and postdoctoral associates at Michigan State University.

References

