Marysville, OH 10

Cheaper than ever before.
Scoll's Seeds are free from weeds and chaff. They provide the sure, economical way to good, thick, healthy turf. We sell direct to the club on a small profit margin. Make your maintenance dollar go farther. Specify Scoll's Seeds and Scott's Turf Builder.

G. M. Scott & Sons Company

Buckner Systems are the leaders for low cost, highly efficient course maintenance. More Buckner Sprinklers and valves are in use on American courses than any other make. Without obligating you, you may have the Buckner Catalog before you on your desk while you plan. Write for it.

Buckner Manufacturing Co., Fresno, Calif

Which Course Will Get The Play?
You know the answer—the best kept one. 1933 will be plenty tough for the club with ragged greens and patchy fairways. This is a year of keen competition among golf courses and good turf will be the strongest argument in your sales kit. Velvety fairways and smooth greens can now be built and maintained cheaper than ever before.

Scott's Seeds are free from weeds and chaff. They provide the sure, economical way to good, thick, healthy turf. We sell direct to the club on a small profit margin. Make your maintenance dollar go farther. Specify Scott's Seeds and Scott's Turf Builder.

"The Putting Green," a book for greenkeepers and greens chairmen, is supplied for the asking.

G. M. Scott & Sons Company

Marysville, Ohio

Overcome Nature's Whims
Rain-Fresh Fairways when you NEED them

The way to win permanent independence from Nature's haphazard watering of your course is to install an economical sprinkling system for complete regulated irrigation. This takes the matter of alluring fairways, that will secure popularity, into your own hands. Now is the time to plan such an improvement.

Buckner Systems are the leaders for low cost, highly efficient course maintenance. More Buckner Sprinklers and valves are in use on American courses than any other make. Without obligating yourself you may have the Buckner Catalog before you on your desk while you plan. Write for it.

Buckner Manufacturing Co., Fresno, Calif

Factory Representatives:

Eastern Engineering Representative:

Milwaukee Milorganite

Ideal Turf Fertilizer

The Sewerage Commission

Milwaukee Wisconsin

Boy! what a fairway!

No wonder dubs and stars alike prefer the course whose lucky fairways have been fed on Milorganite. No bald spots—just dense, soft, velvety turf where every lie is a good lie.

More Golf Clubs use Milorganite than any other fertilizer because actual tests have demonstrated its superiority. Milorganite releases its nitrogen gradually and continuously over long periods of time. Milorganite can be applied in generous quantities, therefore fewer applications are necessary. Milorganite will not cake in storage. And best of all, Milorganite is less expensive per ton and per acre. Free Bulletin "How to Use Milorganite on Fairways and Greens" mailed on request.

Outsells All Other Golf Fertilizers

Milwaukee Milorganite

Ideal Turf Fertilizer

The Sewerage Commission

Milwaukee Wisconsin

Which Course Will Get The Play?
Comments On The Chicago Convention

JOHN MAC GREGOR SAYS

We can look back with a feeling of satisfaction to the Convention and Golf Show just past. Without doubt, it was one of the most successful ever held by our organization. I believe the main reason for this was full cooperation and harmony by the committees and membership.

The chairmen of the various committees are to be congratulated on the efficient manner in which they conducted their meetings and the conclusions arrived at. Their reports were approved by the Convention with harmonious accord. The chairmen of these committees with the exception of the nominating committee are officers and directors of the N.A.G.A. They are naturally vitally interested in the proper functioning of our Organization.

Ed. B. Dearie is deserving of unlimited praise for the efficient manner in which he conducted the entertainment for the convention. Fred Burkhardt, as usual, had the Golf show in perfect order. No one has given more of his time to the success of our organization then he.

We wish to express our thanks to the exhibitors for their support of our organization and hope they will again be with us in Pittsburgh in 1934.

We wish to thank the speakers who gave so liberally of their time and talent to make our Conference program the best ever presented by any organization in the interest of golf. We wish also to thank the management of the Hotel Sherman for their co-operation in helping make our Convention the success that it was.

FRED BURKWARDT SAYS

Our N. A. G. A. Convention and Show, recently held at the Sherman Hotel, Chicago, can be set down as another stepping stone in the Association's progress.

It was surprising the number of greenkeepers and visitors who attended the first morning of the convention on Jan. 31, and the attendance for the four days justified all plans.

The exhibition hall was as usual a constant source of interest to the greenkeepers and many others who were interested in turf culture. Almost all types of golf course equipment with the 1933 phases, were displayed, together with the various other supplies.

The entire Board of Directors was re-elected for another term, and John Pirie was unanimously voted a Trustee for a three-year term. As in accordance with the By-Laws, the Chairman, Joe Williamson's term of one year had expired.

After considerable discussion, Pittsburgh was chosen as the convention city for 1934. It was generally felt that this location would be best for the Association next year, because of its central location and the facilities offered.

FRANK ERMER SAYS

Just a line in regards to our Chicago Convention. The officers of the Association should be congratulated on the way everything was handled this year. Also our worthy President Mr. John MacGregor and his aids should be given a lot of credit for the splendid educational features derived from the Greenkeepers' Conference, also the splendid banquet, etc.
ANNOUNCEMENT

By Robert E. Power, President and Editor

Reluctantly, and with some pangs of personal regret, we leave our official connection with the National Association of Greenkeepers of America. We may be likened to the mother robin which must some day see the offspring she has borne and nurtured, grow to strength and wing-spread and fly away on their own. She no doubt swallows a lump in her throat and prays that their quest may be happy and successful.

The National Greenkeeper is and always has been a turf culture magazine—in fact was the first and still is the only one in the world. It began publication in December, 1926, and has, since its inception, published and promoted the best thoughts and practices in the growing and care of fine grasses. Its subscribers are residents of almost every nation on the globe.

It is said that the "sun never sets on British soil." Likewise the sun never sets on the green covers of The National Greenkeeper.

Golf turf is only one item in turf culture. Every householder who grows a lawn has a turf problem. Private estates, parks, cemeteries, schools, colleges, aviation and athletic fields have much greater ones. The National Greenkeeper with its practical, up-to-date editorial features appeals to all these.

In the expansion of our educational work in the broad, world-wide field of turf culture, we hope always to carry close to heart the problems of the greenkeeper of the golf course. Like the favorite son he will always be in our thoughts. Yet we must go on and fulfil our mission as the only turf culture journal in the world appealing to practically millions of people in both the Eastern and Western hemispheres. The satisfaction we have in supplying this vast army of men who need and desire accurate information about grass problems, is beyond the mercantile imagination.

Behind The National Greenkeeper is a decade or more of practical experience intensified by vast and varied contacts in every part of the universe. To still further broaden its scope and influence is our objective. And we know we are intrenched to do it.
Hunting For The Perfect Grass

By PROFESSOR H. B. MUSSER
Penn State College, State College, Pa.

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago

The systematic selection and critical testing of new strains of the fine turf grasses is a slow process. It involves a rather large amount of time and labor and the patience to wait over a five or six-year period for anything in the nature of definite results. Further than this, its final value not only depends on the degree of success attained in the development of improved varieties, but just as definitely on the extent to which those who can use these new types are familiar with how they have been produced and the characteristics which differentiate them from others.

All too frequently it happens that, when an attempt is made to put the findings of experimental work into practice the results are disappointing. It appears fairly evident that this must be due, primarily, to one or both of two causes. (1st) The trouble may lie with the man who was responsible for the experiment. He may have failed to interpret it properly, or to point out clearly the conditions under which it was performed and the limitations in the practical applications of results. Or, (2nd) the failure may be due to the fact that the man who is attempting to use the results has, himself, misinterpreted the facts as presented and is trying to fit a set of experimental results to conditions for which they were not designed.

In either event, most of the trouble might be avoided if those who are attempting to use the results can be kept in touch with the progress of the experiment; if they have followed it through the initial stages, know the conditions under which it has been conducted and the factors that have been considered in interpreting the results.

For these reasons I greatly appreciate the opportunity to place before the members of the N. A. G. A. the plan of breeding work with the fine turf grasses at the Pennsylvania Experiment station; and to describe, within the time limits, the procedure in securing new types and the method used in testing them.

The plan includes (1st) the isolation by selection of as many distinct types as possible from the various species, and (2nd) a critical study of these types to determine their definite characteristics and the probable conditions under which they may be expected to give the best account of themselves.

It will be noted that this plan does not include any preconceived idea of what constitutes the ideal
In order to have such a mental picture in the case of breeding work with the fine turf grasses, it would first be necessary to supply an adequate definition of "the perfect grass." In the first place, such a definition would have to be based on the use that is to be made of the grass. Obviously, from the standpoint of its use on a green, it must produce a perfect putting surface. And yet, our most expert players are by no means unanimous in their opinions as to what a perfect putting surface should be. Again, to qualify as perfect, in the restricted sense of the word, a grass should grow equally well under all conditions of weather, treatment, soil fertility and play to which it may be subjected.

Anyone who has worked with plants to any extent, particularly with grasses, soon comes to realize that, while there is always the possibility of finding such a type, the odds are great that the search will be long and probably barren of results. The chances of finding a universal grass are probably just about as good as they would be of finding a man who can play perfect golf, bat .350 against any kind of pitching, who can settle the foreign debt question to everybody's satisfaction, plead a perfect case, preach a perfect sermon and do the hundred and one other things required by a complex civilization better than anyone else can do them.

There are so many species of grasses and so many families within a species, and they have such widely separated individual characteristics—inherted differences in form, structure and adaptability to their surroundings—that we can hardly hope to find all the desirable points concentrated in one individual. It would seem, therefore, to be a mistake to limit a breeding program to a search for such an ideal type.

TYPES OF GRASS VARY WITH CONDITIONS

In contrast with such a policy, the aim has been to find as many types as possible and to study those types in a critical way to determine to what extent their individual characteristics would adapt them to any particular set of conditions. This is simply putting to work, in a more or less systematic way, a practical truth that the greenkeeper learned a long time ago. A grass that may do well on one course may give all kinds of trouble on another and there may even be very marked differences in the performance of a strain on different greens of the same course.

It is too bad that many of our golf players have not had a chance to learn this lesson, also. The sooner the members of the Squee-dunk club, with its low shaded greens, realize that there is something more to securing good putting surfaces, than insisting that the same type of grass be used that is making perfect greens on the course over the hill, with their high, open conditions, the more grief and expense they will save themselves.

In the development of a breeding program as above outlined, the starting point is the production of as large a number of individual plants as the limits of time and budget will permit. The seed from which these plants are grown comes from two sources. Bulk lots of the various species are secured through seedsmen. We sometimes have material growing from as many as ten different lots of seed of the same species secured in this way.

The second source of seed is from our own nursery plantings. Seed from this latter source is usually pedigreed material. That is, we know and have records on the parent plants producing it. The probabilities of a large number of different types of plants developing in the plant nursery are good for two reasons. (1st) The practice of securing seed from many different sources, whenever possible from growers themselves, provides reasonable assurance that material will be secured that has been produced under a wide range of growing conditions, and (2nd) Plants produced from seed taken from individual plants in the nursery, should show an exceptionally wide range of variations in type due to the fact that so many different types are growing so close together. Any plant may cross with any other plant in the entire nursery, with the possibility of a new combination of characteristics coming out in the plant that develops as a result of the cross.

GROWING SEED IN THE NURSERY

Plants for the nursery are secured by starting seed in flats in the greenhouse about the first of February. Four or five rows of plants in each plot are grown from the same lot of seed. About May first,
or as near that time as weather conditions permit, the plants are transferred from the flats to the plant nursery.

Approximately 100 plants are taken at random from each lot in the flats, except in the case of those which are grown from the plant nursery seed. In this case only twenty plants are usually saved from a group grown from seed of an individual parent. The plant rows in the nursery are two feet apart and the plants are spaced at two-foot intervals in the rows, so that each plant has an area of four square feet in which to develop. The plants are held in the plant nursery through two full seasons.

The detailed study of individual plants is started in the fall of their first season in the nursery. Records are made of foliage texture and color, habit and rate of growth, drought and disease resistance, color after frost, winter injury, earliness to start in the spring, general vigor, length of stolon nodes, if stoloniferous, and seed habits. Most of the above qualities are so intimately connected with the formation of good turf that a record such as this gives practical assurance that nothing will be discarded in the later selection work that has even remote possibilities of forming good turf.

TAKES TWO YEARS FOR SEED SELECTION

ACTUAL selection work is begun during the late summer of the second season. The records which have been collected on individual plants, together with a final careful examination made at this time are the basis for either discarding or saving a plant for further testing. Following plant selection, the next step is the development of sufficient material from the selected plants to determine their sod-forming qualities. Obviously, not much can be learned about this in the plant nursery.

In the case of the stoloniferous types of plants the propagation of the needed material is a simple matter. The plants are lifted bodily out of the plant nursery, the stolons divided and planted in a propagation nursery. When plants are selected from which sufficient seed must be developed to test their sod-forming qualities, the process is not so simple. The fact is, we have not developed a satisfactory technique for the maintenance of pure strains by the use of seed.

The bent grasses are highly cross fertile. This means that every seed produced by a mother plant might have a different father. Under such conditions one would not expect much uniformity in the plants grown from seed of that mother plant, and we do not get it.

With so much variation in the physical appearance of the progeny plants the chances are good that there will be just as much in such characters as winter hardiness, disease resistance, etc. Consequently, any satisfactory plan for the development of pure strains by seed must provide for growing progeny plants from seed of the original parent long enough to determine how much uniformity and trueness to the parent type can be maintained. We have made a start with this but can not report much progress up to the present time.

While cross fertility is a very effective bar to rapid progress in improvement by seed selection, it is the hope and chief tool in the case of selection of plants that can be propagated vegetatively. A new plant developed at a stolon joint is simply a continuation of and is identical in characteristics with the parent plant. Cross fertility gives us a large number of variable forms from which to select and vegetative propagation perpetuates the desirable ones.

This brings us back, in our story, to the propagation nursery. This nursery, as the name implies, is used primarily to develop additional material from each selected plant for further testing. Plantings are usually made in the early fall. By the following fall the rows develop sufficiently to supply the necessary quantity of stolons to vegetate two 6'x6' plots. Practically all plants that are moved up from the plant nursery to the propagating nursery are taken into the sod plots. Occasionally, a plant will show some weakness in the nursery row that either was missed or did not develop in the plant nursery. When this happens that plant is discarded.

The turf-forming qualities of the selections are tested on what might be called "the proving ground." This is a level area that has received soil preparation to make it as nearly comparable as possible to conditions on a good lawn or putting green. At the present time it consists of 96 plots 6'x6' in size. The entire area is treated uniformly from the standpoint of watering, fertilizer applications and clipping. In applying top dressings of compost, however, the amount applied to any plot is regulated by the need of that particular strain as indicat-
ed by the appearance of the turf. We would like to do this also with watering, fertilizing and clipping but there are so many practical difficulties involved in varying these treatments on individual plots that it seemed desirable to keep them uniform.

To overcome this difficulty we are planning a series of what might be called quarantine plots, where strains that are otherwise good but do not seem to do their best under the common method of handling can be studied under different maintenance conditions.

CHECKING SOD PLOTS IS DIFFICULT

One of the greatest difficulties connected with the study of strains in the sod plots has been to find a satisfactory yard stick with which to measure the relative quality of the different plots. In order that there may be a uniform standard of comparison, against which all plots can be checked, every fourth plot of every second row has been planted to the same strain of grass. This planting scheme makes possible the comparison of each selection plot with a check that is growing next to it. We are using the Washington strain at the present time as the check strain. Any strain could be used for this purpose, the important thing being to have a standard of comparison against which everything can be checked.

Another step in creating a yard stick that will measure as accurately as possible, is the provision for duplicate plots. In maintaining plots of this type there is always the possibility that accidents will happen or that conditions may occur on a plot that are not easily accounted for. By maintaining duplicate plots of each strain the one can be checked against the other and the chances of error in record-making reduced. While this doubles the area of the test plots and doubles the time spent in caring for them and making observations, we feel that this is well worthwhile because of the added protection against mistakes. We would really feel much safer if we could have 3 or 4 plots of each selection. This seems out of the question, however, with our present budget.

A yard-stick to be of any value, must actually measure a yard. Similarly, a study of the qualities of different strains of grass must give us at least a reasonably accurate picture of their more important characteristics from a turf-forming standpoint. There is practically no limit to the number of detailed notes and records that can be taken throughout the four or five-year period during which a strain is under observation. The difficulty is that records which are too detailed become so unwieldy that they defeat their own purpose. No one, sometimes not even the man who made them, can tell what they are "all about." Records that are kept on each proving ground plot attempt to answer the following practical questions about each grass selection.

1. How fast does it grow in comparison with the standard?
2. How does it stand cold weather?
3. How early does it start in the spring?
4. Is it resistant to disease?
5. If it takes diseases, how quick does it recover?
6. What kind of turf does it make in comparison with the standard when growing conditions are good?
7. What is the condition of the turf in comparison with the standard when growing conditions are poor?
8. How is its general vigor with respect to resistance to weed infestation? (We use Poa annua as the measure because it volunteers very readily at this time of the year in our section of Pennsylvania.)
9. How badly does it grain in comparison with the standard? It will be recalled that each plot is composted separately according to its needs, to reduce graining to the lowest point possible for each strain.

At the end of each growing season the records on each strain are compared with those for the check plot that is closest to it. This provides a simple chart that interprets the characteristics of the selections in terms of those of the standard. It not only tells something about the value of any selection in comparison with the standard, but it gives a basis for comparing one strain with another. These comparisons, together with the earlier records obtained from the plant nursery, are used as the yard-stick to measure the possibilities of the strain.
RECORDS OF A FIVE-YEAR TEST

Last season marked the end of the five-year period necessary to get a complete set of records on the first group of selections made in 1928. In that year records were made on approximately 1700 plants in the plant nursery. Thirty-one of these original plants have come through the second year in the sod plots. Records on seven of these thirty-one selections are so encouraging that they will be multiplied during the coming season for practical trials.

Since 1928 an average of approximately 800 plants have been grown each year in the plant nursery. As a result of selection from these we have forty-two strains of Agrostis canina growing in the propagating nursery. Fourteen of these have already had one season in the sod plots and the others will be put in as soon as possible. In addition to these the propagating nursery contains a total of fifty-three selections of Agrostis palustris, forty of which have been in the sod plots for from one to two years.

The greatest weakness of the selection work as described thus far, will be apparent immediately to the practical groundskeeper. It does not give us performance records of the new selections under growing conditions that are different from those at State College in Pennsylvania. In addition, it makes no provision for giving a new selection the most important test of all—its performance under actual playing conditions.

HOW GRASS STRAINS ARE TESTED

It is recognized that no study of new strains would be of general value unless it included tests of their adaptation to a wide range of soil and climatic conditions and of their ability to stand up under heavy play. As strains demonstrate in the preliminary study that they have desirable qualities from a turf-forming standpoint, such as a high degree of resistance to disease, winter hardiness, freedom from graining, etc., and deserve further testing, they are multiplied in a nursery maintained for this purpose.

As soon as sufficient material is available, small amounts of each strain are sent out to groundskeepers in different sections of the state who are willing to grow them in their nurseries and make the necessary observations on them. At the present time from four to seven new strains are being grown for observational purposes, on eight golf courses in various parts of the state.

Facilities at the Pennsylvania State College are excellent for making tests on the new strains. An eighteen-hole course is maintained by the college on which an average of approximately two hundred rounds of golf are played per day. One of the greens has been set aside for the strain tests and plantings will be made as fast as material becomes available and budget limits permit. It is probable that as additional strains are developed the number of greens used for experimental purposes may be increased.

One additional phase of the study of strains of the bent grasses, should be noted. In addition to the testing work being done with new selections we have a number of strains growing in the sod plots or propagating nursery that have been selected by greenkeepers on their golf courses. It is hardly necessary to say that a careful record is kept of the origin of these strains so that full credit may be given to the man who has found them. The same comparisons are made and records kept on these strains as on new selections.

We are interested in securing as many types as possible, particularly those that have already given some indication of adaptability under local conditions. Consequently, if any of you groundskeepers have selections that should be included in our tests we will be very glad to have them and to send you the performance records on them as these become available.
WHY NOT SPIKE THE FAIRWAYS?

IN DISCUSSING this interesting subject of irrigation the well-known effect of water upon the surface soil in conjunction with mowing machinery should not be overlooked. Wet soil, of course, packs down under the weight of the mowing apparatus and becomes baked under the influence of the hot sun. This packing effect which prevents the necessary aeration of the roots, has been found by many investigators, to prevent to a greater or less degree the proper and natural growth of the grass. As the surface will be in a saturated state much more frequently during the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago.

The amount of this flying sand and grit is greatly diminished, of course, if the ground is moist. In fact it has been found that the watering of the fairways causes sand and other abrasive substances to remain undisturbed during the cutting operation.

As this watering continues throughout the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago.

The amount of this flying sand and grit is greatly diminished, of course, if the ground is moist. In fact it has been found that the watering of the fairways causes sand and other abrasive substances to remain undisturbed during the cutting operation.

As this watering continues throughout the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago.

The amount of this flying sand and grit is greatly diminished, of course, if the ground is moist. In fact it has been found that the watering of the fairways causes sand and other abrasive substances to remain undisturbed during the cutting operation.

As this watering continues throughout the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago.

The amount of this flying sand and grit is greatly diminished, of course, if the ground is moist. In fact it has been found that the watering of the fairways causes sand and other abrasive substances to remain undisturbed during the cutting operation.

As this watering continues throughout the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago.

The amount of this flying sand and grit is greatly diminished, of course, if the ground is moist. In fact it has been found that the watering of the fairways causes sand and other abrasive substances to remain undisturbed during the cutting operation.

As this watering continues throughout the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago.

The amount of this flying sand and grit is greatly diminished, of course, if the ground is moist. In fact it has been found that the watering of the fairways causes sand and other abrasive substances to remain undisturbed during the cutting operation.

As this watering continues throughout the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago.

The amount of this flying sand and grit is greatly diminished, of course, if the ground is moist. In fact it has been found that the watering of the fairways causes sand and other abrasive substances to remain undisturbed during the cutting operation.

As this watering continues throughout the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago.

The amount of this flying sand and grit is greatly diminished, of course, if the ground is moist. In fact it has been found that the watering of the fairways causes sand and other abrasive substances to remain undisturbed during the cutting operation.

As this watering continues throughout the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?

Reprinted from address delivered at the Annual Greenkeepers Educational Conference in Chicago.

The amount of this flying sand and grit is greatly diminished, of course, if the ground is moist. In fact it has been found that the watering of the fairways causes sand and other abrasive substances to remain undisturbed during the cutting operation.

As this watering continues throughout the dry periods, which have always been so hard upon the mowers, less wear will undoubtedly result and less depreciation, than has ever heretofore been the case when they have had to run through the dust and sand of the dried-up grass of the midsummer season.

It is also a fact that the time which the machinery will take to cut the grass on the watered course will not be any longer necessarily than on a dry one, because certain weeds continue to grow on the fairways during the drought. These stand out conspicuously and seem to flourish, no matter how burnt and dry the grass may be. They are unsightly and often interfere with the lie of the ball. To keep the weeds down, the operation of the mowers is required to travel over the course nearly as often as during the season of frequent rains.

WHY NOT SPIKE THE FAIRWAYS?