tin has been somewhat delayed in its issuance, but it is expected that in the future it will be promptly printed and circulated.

It is interesting to know that in February, 1929, a Board of Greenkeeping Research was established for the scientific investigation of greenkeeping problems by a Joint Advisory committee of the Golf Unions of England, Scotland, Ireland and Wales. Its Director, R. B. Dawson, acknowledging my congratulations in the issue of their most attractive Journal said, "Like yourselves we are finding experimental work of increasing value not only in advising clubs as to treatments, but in adding to the general knowledge of turf culture." Thus is now seen in the old country, further co-operation in the work and problems in which we are all interested.

N. A. G. A. PRAISED FOR ITS GOOD WORK

In further co-operation are the activities of your splendid Association of Greenkeepers primarily organized, as is the Green Section, for the betterment of turf conditions. You are very fortunate in still having at your head as President, the founder of your Association, a man of vision and experience, who has given his time and effort to the interests of greenkeeping, a man commanding the respect and affection of every one who knows him—John Morley.

In still further co-operation is the publication of your interesting magazine, The National Greenkeeper, with its instructive articles on turf control, and ably edited by Robert E. Power. To them and others in your organization, as well as to state and local associations throughout the country, the greenkeepers and clubs are indebted for valuable advice and suggestion in the betterment of golf courses.

May I take this opportunity to congratulate the committees in charge of the splendid Golf Shows you have at your conventions, which have added much to their interest and pleasure, and for which in recent years your hard-working chairman is responsible, Fred A. Burkhardt.

The comprehensive work of the Green Section can perhaps be better understood in my telling you that our Association now expends annually nearly $42,000.00, which is $9000.00 more than is received in dues from member clubs. It realizes that
Why your course should have
LEWIS WASHERS

1. Quick and easy to operate.
2. Thoro cleaning.
3. No sand to mar paint.
4. Low cost.
5. Long life.
6. Neat, attractive appearance lends distinction to course.
 a. It's easier to keep your eye on a clean ball and hit it correctly.
 b. A clean ball is more quickly found when lost.
 c. A clean, slick ball has less wind resistance — drives farther and straighter.
 d. A clean ball rolls true to the putting stroke.

Get in touch with your distributor

New Low Prices

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 10 Washers</td>
<td>$5.50 each</td>
</tr>
<tr>
<td>11 or more Washers</td>
<td>$5.00 each</td>
</tr>
<tr>
<td>LEWIS Tee Stakes</td>
<td>$1.50 each</td>
</tr>
<tr>
<td>Waste Container</td>
<td>$1.50 each</td>
</tr>
<tr>
<td>Tee Data Plate</td>
<td>$1.10 each</td>
</tr>
<tr>
<td>Towel with grommet</td>
<td>$1.25 each</td>
</tr>
</tbody>
</table>

Price f.o.b. shipping point

Operation

The ball is inserted in an oblique slot in the hard maple paddle. A few easy strokes scrub it clean between two stiff brushes. The oblique slot causes the ball to rotate on each stroke, cleaning every side thoroughly. Only pure soap and water are used, no sand. A simple, sure, quick method of washing golf balls.

Will clean 300 balls per hour when necessary.

LEWIS WASHERS

Golf Ball Washer

G. B. LEWIS COMPANY
WATERTOWN, WIS

Why your course should have LEWIS BALL WASHERS

golf is a game of pleasure, and a club to be successful and self-supporting must have an adequate membership which cannot be easily had if links are not kept in first-class condition.

An increase in the number of clubs means, of course, more employment for greenkeepers. If he values his job, he should be glad for self-interest alone, to receive the reports of the Green Section, and if in availing himself of its experiments and research he can give his club a finer golf course and save money in its maintenance, he can command a higher salary. Greenkeeping today is a profession requiring technical and scientific knowledge.

The work of the Green Section is still in its infancy. It does not claim immunity from error or that its advice is infallible, but it does feel that progress has been made and valuable information obtained, which has greatly helped the golf clubs in better links with reduced expense of maintenance. There is still, as you all know, much to be learned, especially in leaf spot disease, turf insect control, and fairway improvement, and as we learn from continued experiments and research, the great waste of money now going on will be materially lessened in the knowledge of the best methods to follow.

INSECTS GREATEST SOURCE OF TROUBLE

May I briefly state some of our future problems. Insects continue to be the greatest source of trouble on many golf courses, such as the mole cricket in the South, ants, grubs, cutworms, army worms, grasswebe worms and many others, and until adequate information is obtained in research and experimental work, a large sum of money is spent each year without results.

Most of our experimental work has been in the growth and treatment of putting greens, but the condition of fairways is just as important and few clubs have perfect ones. This brings to the front problems which have in most cases been unsolved, such as the best methods of preparing, fertilizing and seeding various soils in different degrees of climate, time of application of the fertilizers and their rotation, best use of water, particularly in view of the sprinkling systems which many clubs are establishing, best height to cut, control of weeds, particularly clover which the too great use of

LEWIS WASHERS

Golf Ball Washer

G. B. LEWIS COMPANY
WATERTOWN, WIS

New Low Prices

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 10 Washers</td>
<td>$5.50 each</td>
</tr>
<tr>
<td>11 or more Washers</td>
<td>$5.00 each</td>
</tr>
<tr>
<td>LEWIS Tee Stakes</td>
<td>$1.50 each</td>
</tr>
<tr>
<td>Waste Container</td>
<td>$1.50 each</td>
</tr>
<tr>
<td>Tee Data Plate</td>
<td>$1.10 each</td>
</tr>
<tr>
<td>Towel with grommet</td>
<td>$1.25 each</td>
</tr>
</tbody>
</table>

Price f.o.b. shipping point

Operation

The ball is inserted in an oblique slot in the hard maple paddle. A few easy strokes scrub it clean between two stiff brushes. The oblique slot causes the ball to rotate on each stroke, cleaning every side thoroughly. Only pure soap and water are used, no sand. A simple, sure, quick method of washing golf balls.

Will clean 300 balls per hour when necessary.

LEWIS WASHERS

Golf Ball Washer

G. B. LEWIS COMPANY
WATERTOWN, WIS

Why your course should have LEWIS BALL WASHERS

golf is a game of pleasure, and a club to be successful and self-supporting must have an adequate membership which cannot be easily had if links are not kept in first-class condition.

An increase in the number of clubs means, of course, more employment for greenkeepers. If he values his job, he should be glad for self-interest alone, to receive the reports of the Green Section, and if in availing himself of its experiments and research he can give his club a finer golf course and save money in its maintenance, he can command a higher salary. Greenkeeping today is a profession requiring technical and scientific knowledge.

The work of the Green Section is still in its infancy. It does not claim immunity from error or that its advice is infallible, but it does feel that progress has been made and valuable information obtained, which has greatly helped the golf clubs in better links with reduced expense of maintenance. There is still, as you all know, much to be learned, especially in leaf spot disease, turf insect control, and fairway improvement, and as we learn from continued experiments and research, the great waste of money now going on will be materially lessened in the knowledge of the best methods to follow.

INSECTS GREATEST SOURCE OF TROUBLE

May I briefly state some of our future problems. Insects continue to be the greatest source of trouble on many golf courses, such as the mole cricket in the South, ants, grubs, cutworms, army worms, grasswebe worms and many others, and until adequate information is obtained in research and experimental work, a large sum of money is spent each year without results.

Most of our experimental work has been in the growth and treatment of putting greens, but the condition of fairways is just as important and few clubs have perfect ones. This brings to the front problems which have in most cases been unsolved, such as the best methods of preparing, fertilizing and seeding various soils in different degrees of climate, time of application of the fertilizers and their rotation, best use of water, particularly in view of the sprinkling systems which many clubs are establishing, best height to cut, control of weeds, particularly clover which the too great use
of water promotes, the renovation of poor, weedy turf, the perpetuation of good Bermuda turf, the treatment of brown patch, and that which is best suited for recovery from the deplorable conditions brought about by the prolonged drought last year.

SYSTEMATIC STUDY IS NECESSARY

A systematic study and experimentation is necessary to obtain information which will enable us to solve and successfully meet these problems. In all of them the greenkeepers working with us can be of the greatest assistance and in our combined efforts success will be attained. We not only seek your help and experience, but we are glad to make use of it in our own field of activity. Golf cannot get along without greenkeepers, and few realize the time and effort you put in from early morning to late at night to create better turf conditions. But there is this difference between the Green Section and yourselves.

Clubs have not the necessary funds to enable greenkeepers to conduct intelligent and scientific experiments and research on the same large scale as does the Green Section, and are unable to give the results the same wide publicity. We appreciate the value of your work and hope you in turn appreciate ours, and that you feel in fairness and good will that the sole desire of the Green Section and Department of Agriculture is to help you as best they can.

Only in a hearty and cordial co-operation among us all can the best results be obtained. We are all interested in producing the finest fairways and putting greens possible. If this is accomplished, the existence and cost of the Green Section will be justified, as will your Association of Greenkeepers and others, and you will have a just pride in the golf links of which you have charge. An honest difference of opinion will, of course, prevail at times as to the best methods to pursue, but in any event let us unselfishly work together without jealousy or friction, in the spirit of the utmost harmony, to make golf which we all love, the most enjoyable of games, with better conditions of turf at a minimum expense as our ultimate goal. In brief, let the fullest co-operation be our watchword for the future.

Are your fairways thin and weedy?

If so, it's a pretty sure sign that there is not enough plant food available in the soil. A program of systematic feeding with Armour's Special Turf Fertilizer will help you develop the grasses you have into a vigorous green turf; will produce a deep, hardy root structure better able to withstand hard use and abuse. A thick, well-fed turf goes a long way toward controlling weeds.

Armour's Special Turf Fertilizer is complete and correctly balanced to nourish grass properly. Fairways fed with it take on new life. Greens stay velvety. And the whole course stands the heat and drought of summer better.

Well-developed turf on fairways and greens means satisfied golfers—more play—greater revenue.

We have prepared a booklet for you, "Solving The Turf Problem!" Write for it. It tells the value of a systematic feeding program.

Twenty-one conveniently located plants insure prompt delivery.
INVERNESS—Scene of the National Open in July

Back in 1920, Ted Ray, broad-shouldered English professional, won the United States Open Championship at Inverness. It was a close finish between he and Harry Vardon and Leo Diegel. Times have changed since then and when the golfing talent of the world gather at Inverness July 2 this year there will be many new faces in the picture.

Inverness course has been much improved since the historic championship of 1920. We are told by Sylvanus P. Jermain, president, Toledo District Golf Association who sent us the accompanying illustrations, that whoever wins will have to play superlative golf, even though the distance is only 6529 yards.

The card with a par of 71 looks rather easy with eight of the eighteen holes in the 300-yard mark. In between are five par 4 holes over 400 yards and two par fives. This leaves three par 3 holes, two of which are on the first nine.

Toledo's star course will be a test of golf no doubt. There is plenty of trouble for stray shots and accuracy will be the keynote rather than distance. Therefore, those who want to win, better tune up on their iron play.
Why Minerals In Fertilizers

By R. J. H. DeLOACH

Read at the 5th Annual Educational Conference of the National Association of Greenkeepers of America held at Columbus Ohio, February 3-6.

Fortunate is the man whose vocation brings him constantly in contact with outdoor life. His attitude toward life is more likely to be sane, and his habits orderly. Nature in her various forms speaks a message to him. He becomes weather-wise. Each gust of wind and each passing cloud afford him material for his speculative philosophy. The rising and the setting of the sun are important events in the history of his days. We develop genuine fellowships with the growing grass, the colorful flowers, and the friendly trees.

I am trying to draw a picture of the typical member of this association. You as a body are thinking of the landscape as a whole, and you as individuals are transforming the surface of mother earth in spots, from wild nature into cultural beauty. To do this you must have the inquisitive mind. You pause now and then to contemplate the meaning of nature in the wild state compared with nature under man's dominion. In the development of better greens and better gardens, you write your names across the landscape. You are able to endow each nook and corner as well as the open spaces, with a new fascination that captivates the eyes of your various memberships, and bring joy to your visitors.

GREENKEEPER ANALYZES THE SOIL

In the development of any phase of his work, a greenkeeper will find himself analyzing in the laboratory of his fertile imagination the soil under his feet, and the growing plants that are his constant companions. In his daily efforts to improve the beauty and the hardness of plants, he finds himself experimenting with all kinds of plant foods, hoping that eventually he will hit upon something that will cure most of his ills.

Some years ago the English botanist, Dr. George Henslow, in writing on the origin of floral structures, said: "It will be gathered that colors, per se, are a result of nutrition—of a more localized flow of nutriment to the positions in question." About the time that Henslow made his observations, other students in various parts of the world were working along similar lines and had come to the same general conclusion that nutrition is the chief factor in the modification of plant life. This discovery was found to have a fundamental effect on the growing of plants for economic and aesthetic purposes.

Scientists immediately took up the study of plant growth from this point of view, and since then, many of them have devoted a lot of time to a study of how certain minerals relate plant life to the energy of the sun's rays. A passing review of these interesting studies will help us to get a clearer idea of the function of minerals in the life cycle of growing plants. It will help us to answer the question as to why minerals are used in the manufacture of fertilizers.

Plants assemble the simplest elements of the earth into complex organic matter. They constitute the part of the living world first removed from the mineral kingdom. In fact, plants constitute the natural bridge between the mineral kingdom and animal life, and we are told that "all food which nourishes animals and man, and makes life possible comes originally from a union of water and a simple gas, carbon dioxide, in the leaves of green plants. Our clothing, our fuel, our drugs, and countless other necessities of civilized life are likewise contributed by members of the plant kingdom.

Julius Robert Mayer in summing up his studies on the relation of plant life to the larger forces of the universe has said: "Nature has set for herself
Special Engineering Service
For Turfed Areas

TOPOGRAPHICAL MAPPING

Golf courses require accurate topographical maps to record every detail of the course facilities. The delineation peculiarly required for golf topography is best portrayed by Miller engineers who are used to ground and aerial-ground mapping for drainage, irrigation, and layout. If you lack complete maps, write Miller for prices.

DRAINAGE

Soil technology—the field and laboratory examination of soils—and the interpretation and practical application of these to turfing. If you doubt the wisdom of your expenditures for soil conditioning and fertilization, or if you have a soils problem to solve, send for a Miller engineer.

SOIL EXAMINATIONS FERTILIZATION PROBLEMS

Drainage of difficult soils demands the highest degree of engineering skill, experience, and soils technology. The reputation of Miller engineering was first established in the successful solution of intricate drainage problems. When your drainage system fails, or if you are planning substantial drainage construction, you can give finality to this facility by having Miller engineers design your work.

WATER SUPPLY

The water supply requires careful engineering to secure low cost water. Long experience in developing water supplies under widely diverse conditions has peculiarly fitted the Miller organization to cope with the hydraulics and economics of your water supply.

LOW COST IRRIGATION

The Miller one-man hoseless, tee, green and fairway water systems cost little more to construct (if any) than good hose systems. If you are contemplating fairway irrigation, we suggest that you consult with Miller engineers in order to secure the most and best for your money, and avoid the mistakes common to locally engineered projects.

"TROUBLE SHOOTING"

For over ten years the Miller organization has carried on an advisory maintenance and consultation service, meeting and overcoming troublesome turf situations. When you have on hand trouble which is likely to prove embarrassing, write, phone or wire for...
June, 1931

The National Greenkeeper

essential elements derived from the soil, constitute the necessary chemical basis for plant life.”

Some plant physiologists report that plants get some carbon from the soil, but what they get from the soil is insignificant when compared with what they get from the air.

From what we know of plant life it is quite evident that their chief function is to make carbon compounds, and that life itself centers around these carbon compounds. We cultivate plants in order to increase their capacity for making carbon compounds. We fertilize them for the same purpose, because plants are limited in their work largely by their access to the necessary minerals commonly sold in the form of fertilizers.

VARIOUS ESSENTIALS OF PLANT GROWTH

Of these, C. W. Stoddard, in his book on Agricultural Chemistry, says: “The various essential elements have special parts to play in the phenomena of plant growth: Carbon, hydrogen, oxygen, nitrogen, sulfur and phosphorus at least are essential constituents of plant tissue. The other elements, potassium, magnesium, iron and calcium serve largely as aids in the manufacture and transport of food materials. They are no less necessary than the others, but act more in the nature of cotolytic agents, not appearing in the final product.”

Speaking of these special mineral elements, Palladin says: “Ordinary plants obtain all their ash constituents from the soil, but a chemical analysis of the soil is of little value in determining whether a plant can thrive in any given soil. The essential elements must be supplied to the absorbing roots at proper rates. Soils may generally be much improved for growing plants by the addition of certain inorganic salts. Little is known as to just how the small amounts of essential ash constituents are used in the plant, but all must be supplied.”

Mineral plant foods form the connecting link between the carbon of the air and the water in the soil. They are so indispensable that plants cannot grow without them. Furthermore, plants cannot get these minerals from any other source except the soil, nor in any other form except in the soil solution. Therefore they must either exist already in the soil, or must be placed there to enable the plant to manufacture organic compounds. The health

Total 2-year repair bill for Quint and two greens mowers -- - 50c!

“The PENNSYLVANIA Quint we purchased two years ago,” writes Mr. Wilbur Arnett, greenkeeper of the Bridgman Golf Club, Bridgman, Michigan, “has given wonderful satisfaction on fairways and rough. The fairways improved greatly and we kept the rough at the right height all the time at a saving of more than half.

“OUR TOTAL REPAIR BILL FOR TWO YEARS IS 50c.

“We also have two PENNSYLVANIA Super Roller green mowers which have given two years’ satisfactory service with no expense.

“After nine years as greenkeeper, I say, ‘PENNSYLVANIA Mowers can’t be beaten!’”

PENNSYLVANIA

Quality

LAWN MOWERS

Write for Complete
New Golf Catalog.

PENNSYLVANIA LAWN MOWER WORKS
PRIMOS,
Delaware County, Pa.
and beauty of a plant may be greatly improved by balancing the minerals in the soil, and plants always have signs to show soil deficiencies.

Most soils are deficient in one or more of these mineral elements. The four elements most frequently lacking in average soils are, phosphorus, potassium, calcium and nitrogen. If these are supplied the problem of organics is solved. All soils rich in minerals have an abundance of organics, if plants grow there, and the quickest and cheapest way to supply organics is to supply minerals, for with these the plants will in a short time be able to fill the soil with organic matter. The carbon of the air is never lacking. The water of the earth is in certain places and at certain times the limiting factor. The most frequent limiting factor is a proper supply and distribution of minerals and nitrogen, and in most cases an additional supply improves plants.

ORGANIC MATTER IN THE SOIL

According to Lipman, there is an average of ten tons or more per acre of organic matter in all cultivated soils, and some have many times this amount. The West Virginia Experiment Station found an average of 42½ tons per acre in fertilized soil, compared with 35 tons in the unfertilized. In the black soils of the middle west there are upward of 50 tons per acre and largely because minerals were deposited in abundance there in geological times. With these minerals in abundance, the plants have done more work than in thinner soils.

About 6% of all the carbon in and around the entire earth, or near 400,000,000,000 tons, is locked up in organic matter now in the soil. Only about 600,000,000,000 tons are in the air making a 40-60 ratio of carbon in soils and air. There has been for many thousands of years a delicate balance of power between the carbon of the air and the organic matter in the soil. It is quite as important for the carbon in the organic matter in the soil to be returned to the air as it is for the nitrogen to be taken from the air into the soil.

We should consider the carbon cycle as well as the nitrogen cycle, and our purpose in using mineral fertilizers is not so much to increase organic matter in the soil as it is to add to the beauty of plants and to increase crop production, and thereby
increase the comforts and happiness of mankind. It happens that everything that increases crop production increases the organic matter in the soil.

Let it be in order for us now to consider the capacity of plants to manufacture organic compounds. Stoddard says: "During daylight on a bright day, one square meter of leaf surface manufactures about one gram of carbohydrate material in one hour. For an acre of corn about the time of tasseling, there is manufactured about 170 pounds of carbohydrates in one day."

Duggar says: "The production per square meter of leaf surface may be about 1 gram of organic matter per hour. The gram of sugar involves the use of the carbon dioxide contained in 2.5 cubic meters. A yield of 300 bushels of potatoes on an acre involves, including tops and roots, about 5400 pounds of water-free substance, or all the CO₂ to a height of more than one and one-third miles over the acre, assuming no gain meanwhile."

CARBONS CONSTITUTE TISSUE OF PLANT

By the aid of minerals, these carbon compounds are first made and then distributed throughout the plants to roots, stem and leaves, and constitute the tissue of the plant. In this form plant material is left at the end of the crop season, or at any time that it happens to be arrested in growth, and is the principal organic matter so abundant in the surface soil. This work of making organic matter depends upon the capacity of plant roots to take up water, which leads us to consider the activity of roots and of their relation to stem and leaf.

The amount of organic matter manufactured by plants depends upon the extent of the root system as well as upon the leaf surface. In some plants the root system about equals in weight the tops, in others the root system is much larger while in still others it is smaller.

Nobbe measured the root-system of a wheat plant about one year old and found the aggregate length of the roots to be 500-600 meters (545-655 yards), while that of a mill grown pumpkin vine measured 50 times as long, or about 25 kilometers (15 3/4 miles).

There are on the average about 720,000 wheat plants per acre, on the basis of 12,000 grains to the

UNBEATABLE!

Staude Utility Golf Course Tractor

Has POWER to SPARE

Used for construction and maintenance work. Its power vividly demonstrated by pulling any 5-section mower, cutting a 142-inch swath or a roller weighing up to 5 tons. Unbeatable on a hilly course. Economical — light in weight — repairs cost almost nothing. Used by nearly 2000 golf clubs and every user pleased.

Price COMPLETE $475 Up. — — Sold on a Money-Back Guarantee

Buy from your local Ford dealer, golf supply house or direct from us.

Write for full information and easy terms.

E. G. STAUDE MAK-A-TRACTOR COMPANY

2630 University Avenue, St. Paul, Minn.
ARE YOU PREPARED for NEXT SUMMER'S DROUGHTS? Now is the time to order

THE SLOW ROTARY
A PERFECT SPRINKLER
For Watering
PUTTING GREENS OR FAIRWAYS
Send for sample, if it does not sell itself it may be returned.

Campbell Irrigation Company
MALCOLM C. LUDLAM, Proprietor
WOODBURY - - - NEW JERSEY

pound and 60 pounds to the bushel of wheat. The combined root systems of an acre of wheat would be about 255,000 miles in length, or sufficient to reach around the earth at the equator, more than ten times. There are about 600 million grass seeds sown to the acre of bent grasses, and the root system of each plant after a few weeks of healthy growth would reach a total length including the infinite number of root hairs, of a minimum of 20 yards. This makes a total length of roots in an acre of grass of about 7,000,000 miles, or enough to stretch around the earth at the equator almost 300 times.

An acre of pumpkin vines are estimated to have about 50,000 miles of root system, an acre of corn near 150,000 miles, depending, of course, upon the number of plants per acre, and the growth of the plants. Grass will be seen to have a distinct advantage of other plants in the production of fibrous roots.

This immense root system of plants combined with tops, leaves and stem makes a total annual acreage production of about 5 to 10 tons of grass, 8 to 15 tons of corn, including the ears, and as much as 60 tons of mangles in a bumper crop. But organic matter lasts 40 years in cultivated soil—at least there are traces of it that long according to Lawes and Gilbert. Within this forty years, the soil accumulates a great mass of organic matter in various stages of decay, amounting in some cases to as much as 100 tons per acre.

PLANTS REQUIRE VOLUMES OF WATER

To perform these miracles of growth, plants require large volumes of water, a lot of leaf surface, an extensive root system and the proper proportions of minerals to be used as catalyzing agents. The capacity of a plant to take water into its system is vitally related to the strength of the soil solution as well as to the extent of the root system. J. D. Newton shows that the rate of plant root respiration, as related to transpiration is increased when the salt concentration of the culture solution is increased, and that the concentration is one of the factors governing water requirements.

In order for a plant to use water economically, it must have minerals in the right proportions. On the average a plant must use 500 pounds of water to manufacture one pound of organic matter based on

Make a light top dressing NOW with "WINDRIFT"
Hardwood Humus Material
Absorbs heat for spring growth. Brings turf much earlier.
Creates an accurate putting surface.
Saves loss of spring moisture through evaporation.

The Ohio Humus Products Co. London, Ohio