TORO means Dependable Maintenance Equipment

Precision standards control every operation in the manufacture of all Toro products. Exacting inspection all along the production line assures accurate workmanship in every machine that leaves the Toro plant. The most approved heat-treating and hardening processes assure sturdiness and long service.

The Toro plant is modern, completely equipped and manned by a highly efficient organization of practical engineers and skilled mechanics.

Toro Manufacturing Company
3042-3160 Snelling Ave.
Minneapolis, Minn.

Service Stations at:

- Newton, Mass.
- New York, N. Y.
- Yonkers, N. Y.
- Syracuse, N. Y.
- Troy, N. Y.
- Jacksonville, Fla.
- Cleveland, Ohio
- Detroit, Mich.
- Indianapolis, Ind.
- San Francisco, Calif.
- Chicago, Ill.
- Des Moines, Iowa
- Kansas City, Mo.
- Dallas, Texas
- Los Angeles, Calif.
- Winnipeg, Man.
- Toronto, Ont., Can.
- Calgary, Alta., Can.
- Buenos Aires, S. A.
- Hamburg, Germany

The Toro Standard Golf Machine is the only tractor that has been built specifically for mowing large areas of grass. Cutting a twelve foot swath, it will cut an average 6500-yard, eighteen-hole golf course in sixteen hours or less. It has ample power to carry five mowers over any hill where golf can be played satisfactorily.

The Toro Top Dresser

The Toro Power Putting Green Mower is 19-inch cut and is equipped with an eight-blade high speed reel and will cut creeping bent putting greens.

Toro Junior Tractor with Dump Box
Contents

THE GREENKEEPERS’ CLASS AT AMHERST, MASS. 4

BY JAMES A. SMITH 5

THE LIFE AND ACTIVITIES OF SOIL BACTERIA

JULY, 1930

No. 5

CANADIAN GOLF ASSOCIATION Recognizes Greenkeepers

By J. H. Evans 28

Why Poor Fairways

By John MacGregor 10

MORLEY ANNOUNCES MEETING 29

MINNESOTA GREENKEEPERS MEET 12

NOER TALKS TO GREENKEEPERS 30

WESTCHESTER GREENKEEPERS DINE AND DANCE 19

THE EFFECTS OF POISONS, INSECTICIDES AND FUNGIicides ON SOIL

By John Quail 31

Golf Course Construction from the Greenkeepers’ Point of View

Chapter No. 1—Designing the Course

By Edward B. Dearie, Jr. 20

MARKET PLACE AND BUYERS’ GUIDE 36

John Morley, President
Youngstown Country Club
2248 Selma Avenue
Youngstown, Ohio

John Quail, Secretary
Highland Country Club
426 Highland Avenue
West View, Pittsburgh, Penn.

Fred A. Burkhardt, Treasurer
Westwood Country Club
Cleveland, Ohio

John MacGregor, First Vice Pres.
Chicago Golf Club
Box 717, Wheaton, Illinois

Lewis M. Evans, Second Vice Pres.
Cedarbrook Country Club
Mt. Airy, Philadelphia, Penna.

DISTRICT VICE PRESIDENTS

E. E. Davis, First Vice Pres.
Buffalo Country Club
Meadville, Penn.

THOS. E. DOUGHERTY, Springhaven Country Club, Chester, Penn.

GORDON W. EARL, Ogdenburg Country Club, Ogdenburg, N. Y.

CHARLES ERICKSON, Minneapolis Country Club, Minneapolis, Minn.

FORD GOODRICH, Flint Country Club, Flint, Michigan

JOHN GRAY, Essex Golf and Country Club, Sandwich, Ontario

HARRY HANSON, Maple Bluff Country Club, Madison, Wisconsin

H. HAWKINS, Lakewview Golf Club, Port Credit, Ontario

ROBERT HENDERSON, Country Club of Buffalo, Buffalo, N. Y.

ARTHUR J. JENSEN, Fargo Country Club, Fargo, N. Dak.

OSCAR JOHNSON, Happy Hollow Club, Orlando, Florida

M. W. LAWRENCE, West End Country Club, New Orleans, Louisiana

GEORGE LIVINGSTON, Belle Meade Country Club, Nashville, Tenn.

HUGH LUCE, Garden City Country Club, Garden City, N. Y.

WILLIAM MAYE, Jasper Park Lodge, Alberta, Canada

JOE P. MAYO, Pebble Beach Country Club, Pebble Beach, Calif.

CHESTER MENDENHALL, Sun Park Golf Club, Wichita, Kansas

T. H. RIGGS MILLER, Richmond Country Club, Staten Island, New York

Wm. J. Sansom, Third Vice Pres.
Toronto Golf Club
Long Branch, Ontario, Can.

George Davies, Fourth Vice Pres.
Big Springs Golf Club
Louisville, Kentucky

Robert J. Hayes, Fifth Vice Pres.
Pentam Country Club
Pentam Manor, New York

Hugh C. Moore, St. Simon’s Island
Golf Club, St. Simon’s Island, Georgia

James Muhlen, Ridgewood Golf Club
Cincinnati, Ohio

Wilhelm Peter, Lynnhaven Golf Course, Kansas City, Mo.

John Pirie, Country Club of Fairfield, Fairfield, Conn.

Clarence Plass, Salem, Mass.

Walter C. Reed, Westwood Country Club, St. Louis, Mo.

Capt. David L. Rees, Progress Country Club, Purchase, New York

Charles A. Robinson, Brookside Country Club, Lake Tarleton, Eliz., N. H.

George Sargent, Scio Country Club, Columbus, Ohio

Robert Scott, Baltimore Country Club, Baltimore, Maryland

H. E. Shave, Oakland Hills Country Club, Birmingham, Mich.

Fred J. Tielen, Colorado Springs, Colorado

D. R. Valentine, Beaumont Country Club, Beaumont, Texas

Joseph Valentine, Merion Cricket Club, Philadelphia, Penna.

George Wellin, Tumblrook Country Club, New Britain, Conn.

Jack Welsh, Waukon Country Club, Des Moines, Iowa.

Walter Woodward, Seneville Country Club, Montreal, Quebec, Canada

Officers—National Ass’n of Greenkeepers of America
The Greenkeepers' Class at Amherst, Mass.

GREENKEEPERS' CLASS AT MASSACHUSETTS AGRICULTURAL COLLEGE

Second Row—Left to Right: Charles T. O'Keefe, Charles River Country Club, Newton; Prof. Lawrence S. Dickinson, director of the course; Dr. William R. Davis, instructor in horsemanship; John Mc advertisement. Thomas P. MacNamara, instructor in agronomy; Henry White, Allegheny Park Commission, Pittsburgh; Henry Whitlock, instructor in motors; Joseph Johnson of Belmont Springs Country Club, Waverly; Dr. Miles H. Cubbon, instructor in soils.
The Life and Activities of Soil Bacteria

BY JAMES A. SMITH

Read at the Fourth Annual Convention of the National Association of Greenkeepers of America at Jefferson County Armory, Louisville, February 4-7, 1930

AN EXCLUSIVE FEATURE

In this very instructive paper on soil bacteria read at the National Greenkeepers' Conference at Louisville in February, Mr. Smith divided his subject into two parts—I, Manures, and II, Compost. By so doing he was able to show just what conditions produced bacterial activity both favorable and otherwise, without which there is no plant life.

This tremendously interesting and important information is printed here for the first time and is an exclusive feature for readers of the National Greenkeeper.

JAMES A. SMITH
London, Ohio

Manures

SINCE the present source of additional soil humus will be manures, until they are exhausted, I feel it the duty of each greenkeeper to know that he is well informed upon the processes which makes manure valuable in the soil.

For many years we have taken the value of manure for granted and have not considered them at any time at their actual value. Ripened manures make a perfect home for our nitrobacteria but until ripened they have practically no value at all. There are many text books, easy to read, which will give you all the information you will need on this subject.

Ordinary horse manures are usually gathered from wood floors which have allowed the greater proportion of the liquid manures to be lost. The bedding, litter and solid matter with which the animal is bedded and which accumulates from the manger will absorb a portion of these liquid manures. Usually in the morning when the stable is cleaned, all that is left of the liquid manure is that which has been absorbed by this bedding and litter and by the fibrous matter of the solid manures.

The horse unlike the cow does not fully digest its food, making most of the manure voided nothing but fibrous matter. This manure so found is in the great majority of cases
thrown upon a loose pile with abundant access to air. Within three days the small amount of liquid manure which comes from the barn, as absorbed by the solid matter, has been acted upon by the bacteria which comes from the intestines of the animal so that not only the liquid manures are lost through the floor but those which have been absorbed by the litter have been completely thrown off. This will constitute about one-half of the original value of the manure.

What is left, until it has been ripened, has little or no value. In order that the straw and solid material coming from the manger may be completely decomposed we must call in the greatly disliked denitrifying bacteria which must break down our solid manures. This is one instance where denitrifiers are essential on the farm.

Denitrifiers can only work in wet conditions with a freedom from air. That we may hasten the decay of this solid matter, all manures received by the greensmen, unless thoroughly decomposed or ripened, should be riddled or put into a pile, the sides of which are squared up, allowing the least possible opportunity for the pile to dry out. "Probably the best protection against drying and allowing the admission of air would be that of covering the manure pile with from three to four inches of earth. The pile must at all times be kept thoroughly wetted to encourage the action of our denitrifying bacteria." Lyon, Fippin and Buckman state on Page 593 "The mass becomes decayed, humus is produced and available plant food is evolved".

Fungus May Destroy Pile

If this pile of fresh manure is allowed to become dry and air admitted, the denitrifiers temporarily stop work and our nitrobacteria begin the production of nitrates which will be lost by leaching in the partially decayed pile. There is also a possibility of "fire fanging" with a total destruction of that portion of the pile exposed to the air, by a fungus development. The mycelium of this fungus, having a grayish color, has been frequently seen by you in the apparently burnt manures. The portion of the manures once affected by this fungus have no further value.

When the ripening is completed and all cellulose material is broken down we then have the home for the nitrobacteria. In this ripened manure they accumulate in the greatest possible numbers.

Lipman's "Bacteria In Relation to Country Life" Page 309 says that ten tons of fresh manure will produce 3,600 pounds of ripened manure if properly cared for in the pile in which denitrifying bacteria are constantly encouraged. Should the fresh manures be improperly cared for by exposing them to the air in a very loosely built heap, this authority says that we can have but 2,100 pounds of ripened manure, 1,500 pounds having been lost through the action of nitrobacteria or fungus in the pile while ripening.

Care in Ripening Process Necessary

Since many users of manure are getting but approximately one ton of ripened manure out of each ten tons purchased, the necessity of care through the ripening process is very evident and especially so if we will stop to think that ripened manure contains only about one-half of one per cent nitrogen.

Hall on Page 213 under "Fertilizers and Manures" says that ripened manures in cultivated ground are completely lost as a soil humus in from two to five years. In greens construction, this period of time could be safely doubled because of a lack of nitrifying action in many of our firm soils. Considering this, we should see the need of very large amounts of ripened manures worked into our new greens construction. They originate from straw and similar litter, hence they would be of a very fluffy, light texture.

Your first addition to a green must be your last as there is no further humus addition except as it may occur in good top dressings, the soil humus of which may possibly enter the soil through drift.

Our fairways have the possibility of enrichment in soil humus through clippings left on the ground. Since clippings are entirely removed from greens there must be more attention paid to our soil humus content, both in the soil making up the construction and in our top dressings.
Compost

I am quite pleased to see the Bulletin of the Greens Section endorsing the area compost idea by which we prepare compost through the use of farm tools on possibly an acre of land. Since manures will be the amendment used for some years, this compost area can only be valuable if certain methods of handling are used.

In October the ground should be carefully worked and fined, preparatory to applying the ripened manure. In no case should new manures be used. After manures have been spread, the area should be thoroughly disked and spring-toothed so as to make a perfect mixture of earth and manure. With the cool weather coming on, the nitrobacteria present in the manure will have an opportunity to produce but a few nitrates during the fall and will not become active until the following May.

During the fall and winter the manures will become more nearly a soil humus, ready for active bacterial feedings with warm soil in the spring.

As early in the spring as possible this area should go under very frequent cultivation both with a disk and spring-toothed harrow so that all weed seed may be given a chance to germinate and by the cultivation, killed. This constant cultivation not only more thoroughly mixes the manure and earth but so aerates the soil that our nitrobacteria can begin their rapid development of nitrates. By July they will have produced the greatest amount of nitrates possible to make during the summer and because of lack of rainfall during that month these nitrates will be present in the soil.

Screen Compost in July

At that time, when the ground is dry enough to screen, a full year's supply of top dressings should be taken and stored under cover. Top dressings so saved will not merely be earth but an earth well filled with immediately available nitrates for feeding. This top dressing so stored should be put away in the driest possible condition.

If your course has not already ample storage for this quantity, additional storage would be a splendid investment. Each month following July sees a rapid decrease in the amount of nitrates present in the soil. Top dressings

THE OCEAN-FOREST COUNTRY CLUB

This beautiful lay-out is located at Myrtle Beach, South Carolina, and has had a very active tournament season the past winter. Mr. Edward H. Crandall is president, and Robert White, secretary.
taken late in the fall contain practically no nitrates due to leaching.

The loss of nitrates in cultivated soil has probably accounted for some of our poor fall dressings. If the area devoted to top dressings were put in corn in the spring, and if during the season, this area had had but a light manure dressing, there would have been made approximately 165 pounds of nitrates, the amount of nitrates which would be made depending almost entirely on the quantity of manure applied. Of this 165 pounds of nitrates made, possibly 25 pounds would be used by the corn and 140 pounds would be leached out by the end of the season due to rainfall.

Hall’s “In the Soil” Page 106 says “Nitrates formed during the summer or autumn of one year are practically removed from the soil before crops of the following year can utilize them.” Store all of your top dressings during July.

More About Humus

By Christopher Bain, Greenkeeper, Oakwood Country Club, Cleveland

“All soil humus is organic matter, but all organic matter in the soil is not humus.”

The above from Mr. Smith’s very able and interesting article in the January issue gives in a sentence, a statement of fact that should appeal to all greenkeepers.

The farmer by means of rotation of crops keeps his soil in a state of good fertility, having both manural and cleansing crops; or as Mr. Smith has it soil conditions are such that the nitro-bacteria is kept healthy and active.

We greenkeepers, however, are laboring under a disadvantage of having to continue year in and year out propagating one crop only—that of grass—and herein we find that “all organic matter in the soil is not soil humus.”

A green may show a thin, poorly developed and stunted growth, and immediately the cry goes up that the ground is exhausted from continuous grass growing, while as a matter of fact the ground is rich in plant food, only the soil has become clogged from the poisonous waste which plants excrete from their roots. Until such impurities are removed no vigorous growth may be expected.

Bean Golf Sprayers can be used for Parks, Cemeteries and every other purpose. You should have a copy of this Park Sprayer catalog for your files. It will be gladly sent upon request. It shows the latest equipment and the trend today in spraying machinery.

JOHN BEAN MFG. CO.

Division Food Machinery Corporation

Lansing, Michigan

San Jose, California

The question then arises as to the best method of incorporating humus, or what have you, to relieve or release the plant food known to be in the soil—Mr. Smith states that with “firm and hard packed soils in your greens no artificial feeding which you can apply can permanently revive them.” Here I disagree with the writer—I readily grant that the texture of the soil of all greens should, like Caesar’s wife, be above suspicion—unfortunately in years past the art of greenkeeping was not so advanced as at the present day with the result that many greenkeepers have greens which are more or less hard and packed yet continue to grow luxuriant grass but fall short in having that cushion so necessary to the pitched ball.

Personally I believe applications of charcoal, also lime plus judicious fertilizing will give results—wood ash is also recommended but as it contains some 35 per cent of lime why not apply lime with soil or sand as a filler, as more potent.

I would be glad to hear the opinion of your readers.
Leading greenkeepers report no trouble with BROWN PATCH when Semesan or Nu-Green is used...

For hundreds of greenkeepers, the problem of brown patch control is no problem at all. The November National Greenkeeper gave the experiences of a number of greenkeepers in combating brown patch, among them John M. Coutre, Indian Hills Country Club, Winnetka, Ill. He reported:

"This was the most successful season I have had in the control of brown patch. In all our nineteen greens there has not been a single spot of brown patch. I have tried various ways of controlling the disease and my only and most successful method is to soak my greens good once a week, preferably at night, and on the following day I give the greens a shot of Semesan. I was not bothered with any other diseases at all."

In the same issue, Otto Schael, greenkeeper Wausau Country Club, Schofield, Wis., said: "We had considerable brown patch, but treated it immediately with Nu-Green which gave favorable results."

Brown patch doesn't wait for the warm, humid weather of midsummer to make its appearance. Small brown patch is prevalent throughout the country and may occur at any time during the growing season. It may appear under conditions favoring large brown patch, and also earlier and later in the season.

Both Semesan and Nu-Green are soluble organic mercury compounds. Neither will burn nor injure the finest turf when properly applied.

For the control of large and small brown patch, one pound of Semesan or Nu-Green to 50 gallons of water will treat 1000 square feet of turf by sprinkling. When applied with a power sprayer, 50 gallons of Semesan solution is sufficient for from 2000 to 3000 square feet of turf; 50 gallons of Nu-Green solution for from 1500 to 2000 square feet.

Buy your supplies of Semesan and Nu-Green now from your seedsman or golf supply house.

BAYER-SEMESAN CO., Inc. 105 Hudson St., New York, N. Y.
WE HEAR so much these days about poor fairways. Why? The golfer of today wants to play all of his shots from tee to green on his merits. He knows that he is not playing golf when he can go out in July and August and get 350 yds. off the tee, when his legitimate drive is from 200 to 250 yds. He goes around in the low eighties during this period of baked fairways, whereas during the spring and fall when the fairways are slow on account of rains, his game is usually closer to 90.

There are several reasons why 95% of the courses have poor fairways. The main reason is one which is hard to overcome after the course has been constructed, and that is the proper preparation of the fairways prior to seeding. Usually golf courses are constructed on run down or impoverished farm land, and the directors of a newly formed golf club want the construction rushed, resulting in a mediocre course. The only work done on the fairways on such a course is to run a disc over them, throw some seed over and drag. What can one expect from such procedure? Answer—The same pasture but a little more grass. The lack of money is usually the cause of a poorly constructed 18 hole golf course. Would it not be more economical and satisfactory to build nine well constructed golf holes, than to construct 18 mediocre holes. As the membership increases and money becomes more plentiful, then increase to 18 holes.

False Economy is Poor Economy

FALSE economy is poor economy. To get the best results the preparation of the fairways is very important. A liberal supply of barnyard manure should be spread over the entire fairway, then ploughed under to a depth of about ten inches.

The fairways should be left in this condition for a month, thus giving the old turf a chance to decompose. Then disc thoroughly, drag, roll or plank, sow the seed on the rolled surface, cultipac and drag to cover the seed, using a chain drag to cover. Do not roll after seeding, then the germination will be more uniform. Rolling has a tendency to bake the soil and the result is a patchy germination.

Another reason for poor fairways is starvation or lack of fertilization. Nature can help only to a certain extent. During the spring and fall the rains supply a slight amount of nitrogen, but when the spring rains are over the nitrogen is cut off. Constant cutting weakens the grass plants.

Many clubs try to improve the condition of the fairways by spending hundreds of dollars on grass seeds, when truthfully half of the seed blows away. The other half germinates but burns up when the hot weather hits it. There usually is enough grass on the fairways if it is properly fed. Then, why not stop wasting money on grass seed, and spend it on a well balanced fertilizer suitable for the particular soil. $700.00 worth of fertilizer will go much farther toward improving impoverished fairways than $400.00 worth of grass seed. Try fertilizing an acre against scattering seed over an acre; the result is obvious.

Close Cutting Hurts Fairways

ANOTHER reason for poor fairways is close cutting. We know a limit has to be made on the length of grass on fairways, nevertheless, the grass should be long enough to form a dense turf. This cannot be done if the grass is cut too short. The longer the grass, the