REDUCING HIGH TEMPERATURE STRESSES ON COOL-SEASON GRASSES **Robert N. Carrow** University of Georgia

HIGH TEMPERATURE STRESSES DEFINED

- 1. DIRECT. Temperatures are sufficiently high enough to cause immediate death of the plant.
- 2. INDIRECT. Turf growth is impaired but the high temperatures do not immediately kill the plant. Injury level may be from slight to total.

OCCURRENCE OF HIGH TEMPERATURE STRESSES

Direct	Indirect			
unusually high	prolonged sub-lethal			
temperatures	high temperatures			
heat sensitive grass	heat sensitive grass			
lack of transpirational	transpirational cooling			
cooling; no water or	reduced by poor air			
no roots	drainage, lack of water,			
scald or low soil O.	limited root system,			
conditions	high humidity			
thin or close cut turf	close cut, thin turf			
turf low in TNC or	turf low in TNC or			
hardiness	hardiness			

INDIRECT HIGH TEMPERATURE SITUATIONS

Kentucky Bluegrass/Perennial Ryegrass or Poa annua Fairway

- · photosynthesis inhibition, reduced TNC for roots Initial
- · root maturation and dieback (low priority for TNC)
- · shoot growth declines due to less TNC, some protein/membrane deactivation
- · other stresses are accentuated shoot growth and stand density decrease---- wear, direct high temperature, drought, disease

INDIRECT HIGH TEMPERATURE SITUATIONS

Summer Bentgrass Decline

- SBD in hot, humid conditions (even with good greens mixes)
- SBD on shaded/poor air drainage sites*
- SBD on greens with excessive fines and/or layers*
- SBD on greens under salt stress*
- * Multiple stress situations.

SYMPTOMS OF HIGH TEMPERATURE STRESS

Direct	Indirect ^z	
rapid death of the plant	root maturation and dieback	
	shoot growth declines	
	loss of shoot density	
	total death may or may not occur	

² Normal sequence over several days to weeks.

DIRECT HIGH TEMPERATURE STRESS MECHANISMS

- 1. <u>Protein Denaturation</u>. High temperatures cause certain proteins to coagulate and become denatured (no longer function). Protoplasm coagulates and causes cell wall breakdown.
- Membranes are Altered. Temperatures cause membranes (ex. thylakoid membranes in chloroplasts) to become more fluid, more permeable, and not function. Photosynthesis (PS II) is especially sensitive to high temperatures.

INDIRECT HIGH TEMPERATURE STRESS MECHANISMS

1. Inhibition of Photosynthesis

- · Prolonged carbohydrate depletion leads to carbohydrate starvation.
- · Differences occur at inter- and intraspecies levels.

INDIRECT HIGH TEMPERATURE STRESS MECHANISMS

Prolonged high temperatures not only Inhibits Photosynthesis but also

2. Reduces Protein Function/Synthesis

Heat sensitive enzymes start to denature and lose activity which leads to reduced total protein synthesis.

	Ε	Ε		E	Amino	Ε	Proteins
NO;	\rightarrow	\rightarrow	NH_4^+	\rightarrow	Acids	$-\!\!\! \! \!\!\rightarrow$	• enzymes
							• structural

3. Membranes Lose Function

Heat sensitive membranes start to leak and lose activity.

HIGH TEMPERATURE STRESS MECHANISMS: SUMMARY

Direct	Indirect			
1. Protein Denaturation (catastrophic)	*1. Inhibition of Photosynthesis			
2. Membrane Deactivation (catastrophic)	2. Protein Deactivation Starts			
	3. Membrane Deactivation Starts			
IMPLICATIONS ???				

HIGH TEMPERATURE STRESS PROTECTION #1

1. Use Heat Tolerant Species/Cultivars

- Heat tolerant grasses have:
- · a more heat stable photosynthesis system
- · greater thermal stability of heat-sensitive enzymes/proteins
- · greater thermal stability of heat-sensitive membranes
- · morphological features to reduce heat absorption*
- · possibly heat shock proteins for protection
 - $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
- · more TNC for shoot growth
- · more TNC to maintain root growth and viability
- * pubescent leaves, waxy leaves, vertical leaves

Turfgrasses vary in **direct and indirect high temperature tolerance** at the species and intraspecific (cultivar, ecotype) levels.

- * Species. Bentgrass vs Poa annua
- Intraspecific. Plush KB vs Nugget KB

HIGH TEMPERATURE STRESS PROTECTION #2

2. Maintain Transpirational Cooling

- Adequate Soil Moisture (not too dry or wet)
- Adequate <u>Root System</u>. Problems are:
 close mowing height
 soil chemical, physical, or biological stresses that limit rooting
- Adequate <u>Air Drainage</u>
- Syringing to avoid moisture stress or water to evaporate from leaves.

PRIMARY SOIL FACTORS THAT INHIBIT ROOT GROWTH/VIABILITY

Soil Physical

- · high soil strength in bulk soil or layer
- low soil O, in bulk soil or layer
- high soil temperatures (c.s.)
- excessively dry soil or soil zone

Soil Chemical

- acid soil complex (deficiencies + toxicities)
- high salinity, especially Na+

Soil Biological

- · soil pathogens
- soil <u>insects</u>
- <u>nematodes</u>

HIGH TEMPERATURE STRESS PROTECTION #3

3. Develop Heat Hardiness

Management to maximize the genetic heat tolerance. The result is:

- · increased heat stability of phytosynthesis system/heat sensitive enzymes/sensitive membranes
- higher carbohydrate (sugar) level in cells
- · less succulent cells/tissues

- · increased percent of "bound" water in cells
- · smaller cells, thicker walls

FACTORS REDUCING HEAT/DROUGHT/COLD HARDINESS

- 1. Succulence. Poor water drainage; wet or compacted soil; excessive N; deficient K; shade; close mowing.
- 2. Low Carbohydrates (sugars). High N, close mowing; shade; prolonged high temperatures; deficient Fe, Mg, Mn, S, N; any injury.

HIGH TEMPERATURE STRESS PROTECTION #4

4. Manage for Overall Plant Health

High temperature stress is more serious when in conjunction with other stresses:

- moisture (excessive, dry)
- light (shade)
- low soil O,
- high soil salinity
- · wear, soil compaction
- disease

Also, a healthy grass tolerates a greater intensity and duration of high temperature stress.

SUMMARY HIGH TEMPERATURE STRESS PROTECTION

1. Genetic Based Tolerance

· tolerance mechanisms for direct and indirect high temperature stresses

2. Management Influences

- cutting height (TNC stress)
- succulence (high N, water)
- other

Heat Tolerant Grass + Poor Management = High Job Loss