The Magic Microbes: Myth or Reality?

Anthony J. Koski, Ph.D. Extension Turfgrass Specialist Colorado State University

√What are microbes - and what can they do?

- Bacteria
- Viruses
- ♦ Fungi
- Algae
- Nematodes

√ Why would we want to add microbes?

- To make a "sterile" root zone environment "healthier"
- To "repair" or "improve" soil conditions What do microbes do to improve soil?
 - Enhance aggregation of soil particles by "gluing" them together
 - Greater aggregation should increase porosity, infiltration, and percolation rates
 - Greater aggregation should decrease bulk density (compaction)

North Carolina State University Study

(Charles Peacock and Paul Daniel)

- Tested a number of natural organic and synthetic organic fertilizers on bentgrass and bermudagrass
- Examined bulk density, hydraulic conductivity, CEC, humic content over a 3-year period
- There were no fertilizer effects on soil properties,..."
- Selection of nitrogen fertilizers should not be based "on any expected short- or long-term benefits for soil characteristics."

Golf Course Management, October 1995.

Benefits of Soil Organic Matter

- Slow-release source of N, P, and S for plants and microbes
- Increases soil water-holding capacity
- Acts as a buffer against soil pH changes
- Dark color contributes to soil heating
- Enhances soil structure by cementing sand, silt, clay together
- Binds micronutrient ions in the soil
- Organic constituents in humic substances may act as plant biostimulants

To speed organic matter decomposition

Summary of U. Wisconsin studies on thatch management with BioGroundskeeper (W.Kussow, 1993, Wis. Turf. Res. Rep., Vol. XI)

- Reduced bent-Poa thatch ONLY when used with supplemental nitrogen
- No discernible effects on the depth of Kentucky bluegreass thatch
- Management of insect pests
 - x Fungal endophytes
 - + chinch bugs, webworms, billbugs
 - x Bacilllus products
 - B. popilliae (milky dis./Japanese beetles)
 - B.thuringiensis var. israeliensis (mosquitoes)
 - B.t. var. japonensis (white grubs)
 - X Entomopathogenic nematodes
 - Steinernema carposcapsae (caterpillars)
 - Steinernema glaseri (grubs)
 - S. riobravis and scapterisci (mole crickets)
 - Heterorhabditis bacteriophora (Japanese beetles)
 - x Beauveria bassiana
- Management of disease problems
 - X Gray snow mold control Typhula phacorrhiza
 - X Dollar spot Enterobacter cloacae Fusarium heterosporum Trichoderma harzianum (BioTrek 22G)
 - X Summer patch Enterobacter cloacae Bacillus subtilis Serratia marcescens Stenotrophomonas maltophilia
 - A Brown patch Trichoderma harzianum (BioTrek 22G)
 - Dollar spot, brown patch, Pythium root rot necrotic ring spot, summer patch Composts, natural organic fertilizers

How do Composts Work?

- Increased microbial activity in root zone
- Bacterial production of anti-fungal compounds
- Colonization (taking up space)
- Variable success
 Successful when disease pressure is low
- Supplement fertilization programs
 - Azospirillum brasilense (AzoKote, BioJect Systems)
- Environmental concerns

What kind of microbe sources are available?

- Organic matter sources, composts, fertilizers
- y Bioinsecticides
- y Biofungicides
- Nitrogen-fixing organisms
- Microbial "stimulants"

√Can microbe applications make a difference?

Yes, no, not always... WHY???

- Pathogen biotypes/strains may differ, change
- Host biotypes may differ from region to region
- Soils, climate, biological differences
- Variable pest pressure
- Time of season may inflluence effectiveness
- What works in the lab may not work in the field
- Statistics can be deceiving
- "Acceptable" control is often a subjective measurement

Legitimate? What to look for...

- G Patents
- GEP.A. and/or State registration
- G True university testing and results!
- G Industry track record (testimonials)
- George Respect for the "competition"
 INTEGRITY & PROFESSIONALISM