YOU THINK THERE’S PRESSURE IN MOVING A BALL 6 FEET?
TRY MOVING THE GREEN 60 YARDS.

At Duininck Golf, we know renovation is as much about the process as it is about the end result. Precision construction, ironclad timelines -- every day of play counts. We have the experience and determination to make your most ambitious project a stunning reality in record time. Whatever the challenge, Duininck can do it.

DUININCKGOLF.COM
Cultivation Equipment
Cultivation has never been more productive, efficient and effective. Unlock the full potential of your turf with Toro Cultivation equipment.

Aerators
Walk-behind, tractor mounted and deep tine aerator models. Unmatched productivity – aerate 18 greens in about seven hours. Superior hole quality and precision. Innovative and durable design

Greens & Tees
• No Crushed Cores
• Higher Productivity
• Series/Parallel 3-Wheel Drive
• Easy and Safe to Operate

Fairway Aerators
• Efficient 64" (163 cm) and 98" (249 cm) Aeration Swaths
• Utilizes Proven ProCore® 648 Technology
• Oversized Gearbox and Heavy-Duty Components
• Precision Balanced Coring Head

Deep Tine Aerators
• Depth Control from the Tractor
• Superior Punching Power
• Adjustable Soil Fracturing Capabilities
• Easy Hook-Up and Operation

MTI Distributing, Inc.
4830 Azelia Avenue N.
Brooklyn Center, MN 55429
800-362-3665
763-592-5600
Fax: 763-592-5700
Cultivation has never been more productive, efficient and effective. Unlock the full potential of your turf with Toro

Core Processor
Sweeps, processes and disperses aeration cores in one pass. Reduces time and labor. Returns the turf to playable condition in less time. Reduces stress to the turf

ProCore® Processor
• 70 inches (177.8 cm) Processing Width
• OnePass Hitch
• Full Rear Roller
• Carbide Tip Blades
Glyphosate and interseeding appears to be an effective approach in boosting creeping bentgrass in annual bluegrass fairways.

Sam Bauer, M.S
Brian P. Horgan, Ph.D.
Eric Watkins, Ph.D.
Aaron Hathaway, M.S.
Ronald Calhoun, Ph.D.
Kevin Frank, Ph.D.

Golf course fairways that are established with creeping bentgrass (Agrostis stolonifera L.) are often invaded by annual bluegrass (Poa annua L.), which may easily become the dominant species over time. Undesirable traits associated with annual bluegrass are a light green color, prodigious seed head production, poor environmental stress tolerance, and high disease susceptibility.

Interseeding and nonselective herbicides, like glyphosate, have often been used to increase creeping bentgrass on golf course fairways. The objective of this research was to determine the most effective glyphosate rate and application timing necessary to quickly increase creeping bentgrass populations through interseeding into predominantly annual bluegrass fairways, while keeping the golf course open for play.

Research locations and management
Research was conducted from July to October 2010 at the University of Minnesota Les Bolstad Golf Course in St. Paul, Minn., and Michigan State University Hancock Turfgrass Research Facility in East Lansing, Mich. The Minnesota location was established in 1929 and has since transitioned to annual bluegrass. The plots in Michigan were established in 2006 from seedheads collected during mowing of an annual bluegrass stand.

Soil type in Minnesota was a Cathro Muck (organic material over loamy sediment); in Michigan soil type was a Colwood-Brookston loam.
Initial turfgrass species composition was evaluated before initiation of the study using a grid intersect method (6). Species compositions as averaged over the study areas at each location were: Minnesota, 99% annual bluegrass and 1% perennial ryegrass (*Lolium perenne* L.); and Michigan, 96% annual bluegrass and 4% creeping bentgrass. Kentucky bluegrass (*Poa pratensis* L.) abundance was less than 1% at both locations.

The Minnesota site was subjected to normal golf traffic and received routine fairway maintenance (0.5-inch [12.5-millimeter] height of cut, mowing three times per week) throughout the duration of the study. The Michigan site was not subjected to golf traffic, but received the same routine fairway maintenance.

Timing of bentgrass interseeding

To avoid high temperature and drought pressures of the summer months, creeping bentgrass seed is typically sown in late summer or early fall; however, this timing might not be best when seeding into an existing stand of annual bluegrass because of competition from germination of this winter annual (10). Annual bluegrass seed germination increases in the late summer when soil temperatures fall below 70 F (21 C) (4), putting tremendous pressure on newly seeded creeping bentgrass fairways. Creeping bentgrass seed is able to germinate at higher temperatures than annual bluegrass (10), and annual bluegrass becomes physiologically stressed at these high temperatures after producing seedheads in late spring (12).

Seeding dates were July 15 for Minnesota, and July 20, 2010 in Michigan. Seeding was conducted using a Turfco TriWave slit-seeder calibrated to deliver a total of 65.1 pounds/acre (73 kilograms/hectare) T-1 creeping bentgrass seed to the study area by seeding in two directions on 45-degree angles from a fixed line.Seeder depth was set to penetrate the surface to the thatch-soil interface, not exceeding 0.5 inch (12.5 millimeters).

Glyphosate application timing and rate

Treatment factors included glyphosate rate and application timing relative to date of seeding. The glyphosate product used was Razor Pro (Nufarm Americas), containing 41% glyphosate in the form of isopropylamine salt. Glyphosate applications were applied with a CO₂-pressurized sprayer calibrated to deliver 1.8 gallons/1,000 square feet (7.5 liters/100 square meters). Application rates were 0, 0.25, 0.37, 0.75, 1.5, or 5.0 pounds ai/acre (0, 0.28, 0.42, 0.84, 1.68 and 5.62 kilograms ai/hectare) applied either 14, seven, or zero days before seeding.

A starter fertilizer was applied at a rate of 21.9 pounds nitrogen/acre (24.5 kilograms/
hectare), 43.7 pounds phosphorus (P$_2$O$_5$)/acre (49 kilograms hectare), and 21.9 pounds potassium (K$_2$O)/acre on the day of seeding and three weeks after seeding. Subsequent fertilizer applications of 21.9 pounds nitrogen/acre and 21.9 pounds potassium/acre were applied at six weeks and nine weeks after seeding; additional phosphorus was not required based on a soil test.

Irrigation during establishment was applied daily at 6 a.m., noon and 6 p.m. and delivered in uniform applications of no more than 0.5 inch (12.5 millimeters) water per day. Following establishment, irrigation schedules were adjusted to apply water at 80% to 100% of evapotranspiration as dictated by onsite or local weather station data.

Subdue GR (1% mefanoxam, Syngenta Crop Protection) was applied and watered in with 0.16 inch (4 millimeters) of water on the day of seeding and two weeks after seeding to prevent Pythium. An infection of Pythium occurred in Minnesota on Aug. 12, 2010, and was controlled with Banol (propamocarb hydrochloride, Bayer Environmental Science); this was beyond the 14-day Subdue reapplication interval and was attributed to excessively wet, hot and humid weather.

Dollar spot (Sclerotinia homoeocarpa)

IMAGE 1: RATING = 3. This image is from a plot containing mostly annual bluegrass. No glyphosate applied The annual bluegrass is suffering from summer stress and dollar spot. Photo taken at 6 WAS and represents the decline in TQ during this time. Demonstrates the superior TQ of plots that were converted to bentgrass. (University of Minnesota Les Bolstad Golf Course, St. Paul, MN. Photo: Sam Bauer)
occurred at both locations throughout the study and was controlled with (Daconil Weather Stik, (chlorothalonil, Syngenta Crop Protection). Additional fungicide applications were not required for the remainder of the study.

Data collection and experimental design

Increase in bentgrass abundance was evaluated using the previously described grid-intersect method at three weeks after seeding and again when all plots received 100% cover ratings. Visual turfgrass quality was evaluated weekly following the initial glyphosate application and continued until all plots attained 100% cover. Following guidelines from the National Turfgrass Evaluation Program (NTEP), visual turfgrass quality was assessed based on color, density, uniformity, texture, and biotic or abiotic stresses and rated on a 1 to 9 scale, where 9 is best turf quality and 6 or above is considered acceptable) (9).

The experimental design was a 5 × 3 factorial with a control (no glyphosate) in a randomized complete block with four replicates. Plot size was 4 feet × 6 feet (1.2 × 1.8 meters) with a 1-foot (0.3-meter) border around each plot.

Bentgrass increase with glyphosate applications

In Michigan, creeping bentgrass

IMAGE 2: RATING = 5, also taken at 6 WAS. Glyphosate applied at 0.28 kg a.i ha⁻¹ at 7 DBS (University of Minnesota Les Bolstad Golf Course, St. Paul, MN. Photo: Sam Bauer)
A TOAST,
IN APPRECIATION OF YOUR BUSINESS.
HERE’S TO YOU.

At Par Aide, we’d like to raise a paper cup to you, our valued customer. Because it’s your unyielding dedication to the course that inspires us to keep building the industry’s most innovative products. So from Par Aide, we salute all you do. Cheers.

Wherever golf is played.
abundance was significantly affected by both glyphosate rate and timing of application. Creeping bentgrass abundance was always greatest with increasing glyphosate rates. The rate of 5.0 pounds ai/acre (5.62 kilograms ai/hectare) provided the greatest creeping bentgrass abundance (83% creeping bentgrass at three weeks after seeding and 53% at eight weeks after seeding), but the abundance was not statistically different from that produced with the 1.5 pounds ai/acre (1.68 kilograms ai/hectare) rate (Figure 1). [FIGURE1] Glyphosate treatments at seven days before seeding provided the greatest creeping bentgrass abundance (41%) at eight weeks after seeding, versus 14 days before seeding (26%) and zero days before seeding (34%).

Glyphosate rates also resulted in significant differences in creeping bentgrass abundance in Minnesota. Again, higher rates provided for the greatest bentgrass abundance at three weeks after seeding as well as 12 weeks after seeding, when all plots reached 100% cover. Maximum creeping bentgrass abundance was 30% at three weeks after seeding and 24% on the final rating date. This is approximately half of the increase as reported in Michigan, which is likely a result of additional golf traffic and a large annual bluegrass seed bank at the Minnesota site. The glyphosate rate of 0.25 lb a.i ac⁻¹ achieved a bentgrass increase of 13% on the final rating date.
Timing of application was not statistically significant in Minnesota on either rating date.

Overall, greatest bentgrass abundance was associated with increasing glyphosate rates, with the assumption that higher glyphosate rates suppressed the existing turf enough to allow adequate germination of new bentgrass seedlings. Annual bluegrass regrowth and competition was likely the main factor inhibiting bentgrass germination and spread in the lower rate glyphosate treated plots. Because of this competition, both locations showed a reduction in creeping bentgrass populations from three weeks after seeding to the final rating date.

Although not consistently significant, glyphosate application timing at seven days before seeding produced greater creeping bentgrass abundance on the final rating date at both locations. This was expected, as the 14 days before seeding application allowed for annual bluegrass regrowth before seeding was conducted. Additionally, when glyphosate was applied zero days before seeding, approximately five to seven days were required to suppress the existing annual bluegrass, but creeping bentgrass germination occurred as soon as three days after seeding and was therefore competing with the annual bluegrass.

Turfgrass quality reflects glyphosate application and bentgrass abundance

Effect of application rate

Lower glyphosate rates were more closely correlated with better turfgrass quality in Michigan (Figure 2) than in Minnesota (Figure 3). Minnesota applications were made earlier in the morning to avoid golf traffic and it is hypothesized that more glyphosate was taken up by the plant during this time period. Foliar uptake of glyphosate is enhanced in more humid environments (5) and weather data for St. Paul, Minn., demonstrates that the relative humidity is historically 27% higher in the morning than in the afternoon during the month of July (11). At the beginning of the study, all glyphosate-treated plots showed a reduction in turfgrass quality compared to the control plots. At approximately three weeks after seeding in both locations, the control plots, comprised primarily of annual bluegrass, showed a significant reduction in turfgrass quality.

In terms of resistance to heat stress, annual bluegrass is inferior to creeping bentgrass (1). In Minnesota, the annual bluegrass quality reduction continued beyond five weeks after seeding, at which time the control plots received lower turfgrass quality ratings than all of the glyphosate-treated plots. In Michigan, control plots received lower turfgrass quality ratings beyond four weeks after seeding. Dollar spot disease played a role in the decline of the annual bluegrass control plots at both locations.