Those covers that insulated the greens from low temperatures in winter were Gridlock #3 and #4, TurfPro #1 and #2. Those that showed the least insulation properties during low temperatures were the uncovered control, Albarrie #1, Gridlock #1 and #2, and TurfPro #3. Those covers that insulated against warm temperatures and kept the turf cool in the spring evaluations were Albarrie #1, Nilex #1, and TurfPro #1. Those that showed poor insulation properties and heated the turf were Gridlock #3, TurfPro #2 and #3. Those that showed the least hardiness for creeping bentgrass were Gridlock #1, Gridlock #4, and TurfPro #2. Those that showed the least hardiness for annual bluegrass were TurfPro #2 and Gridlock #3. Those that showed the least hardiness for creeping bentgrass were Gridlock #1, #2 and #4, and TurfPro #2.

Control of Winter Injury Caused by Ice Cover on Annual Bluegrass and Creeping Bentgrass (2000)

By Darrell Tompkins, J. Ross and D. L. Moroz

A lab study compared the effect of ice cover and ice encasement with a control treatment (no ice) on annual bluegrass (Poa annua) and creeping bentgrass (Agrostis palustris) plants. Generally, snow covered plants maintained cold hardiness much longer than plants that were ice encased. Cold hardiness levels for the ice covered plants were intermediate between the other two treatments. This effect was much more pronounced for annual bluegrass than for creeping bentgrass. For annual bluegrass, after 60 days, cold hardness levels were: -180 C for snow covered plants, -100 C for ice covered plants and -20 C for ice-encased plants. By 90 days, ice encased plants were dead. By 120 days, the ice-covered plants were dead. For creeping bentgrass, the same trend occurred, but the loss of cold hardiness was greatly delayed. Therefore, at 150 days the snow covered plants had a cold hardness level of -20 C compared to -180 C for the ice encased plants.

A related field study compared the effects of: snow cover, snow removed in February, ice cover and ice removed in February for annual bluegrass and creeping bentgrass plants. Annual bluegrass plants that had been ice covered had very little cold hardness after 60 days and were dead by 5 days. Creeping bentgrass plants in all treatments could tolerate temperatures below -280 C after 90 days.

Evaluation of Winter Covers

Winter Summaries-
(Continued from Page 11)

for Prevention of Freezing Injury on Putting Greens (2000)

By Jim Ross

This trial was initiated to determine the insulating value of various winter covers and whether there was an effect on spring colour and plant hardiness levels. Four golf green winter covers were compared against an uncovered control. The four covers were Evergreen permeable cover, Typarâ permeable cover, RPEâ Type 4 impermeable cover and an impermeable insulated turf blanket. Covers of 12 feet by 24 foot dimensions were installed on greens at four golf courses throughout Alberta.

Temperatures were collected twice a month from November to the end of January and then three times per week in March and April to determine the effect of the covers on temperatures at the crown level of the plants. Colour rating and plant hardiness levels were also conducted in April.

The insulated turf blanket showed the least fluctuations in temperatures while the RPEâ Type 4 cover showed the greatest heating. The insulated turf blanket and the RPEâ Type 4 cover had the highest colour ratings.

There was the greatest retention of hardiness levels under the insulated turf blanket when measured on April 10. The RPEâ Type 4 cover had the least amount of hardiness. Hardiness levels were measured for the Innisfail site only.

Control of Winter Injury Caused by Ice Cover on Poa annua and Agrostis palustris (1999)

By C. E. Miluch and J. Ross

A golf green cover trial was established late in the fall of 1999 at four different golf courses. One replication was established at Edmonton Country Club, Red Deer Golf and Country Club, Innisfail Golf Club and Riverbend Golf Club in Red Deer. The treatments included an uncovered control, Hinsperger Woven Permeable, LP Typar Permeable Geotextile, RPE Type 4 Impermeable and an Insulated Blanket. Temperatures under the cover and depth of snow on the trial were monitored throughout the winter period. LT50 values under each of the covers will be determined, as well as colour and overall turfgrass quality in the spring of 2000.

Control of Winter Injury Caused by Ice Cover on Poa annua and Agrostis palustris (1998)

By Darrell Tompkins, J. Ross and D. L. Moroz

A lab study was set up to compare the effect of ice cover and ice encasement with a control treatment (no ice) on Poa annua (annual bluegrass) and Agrostis palustris (creeping bentgrass) plants. Generally, snow covered plants maintained cold hardness much longer than plants that were ice encased. Cold hardiness levels of plants treated with an ice cover were intermediate between the other two treatments. This effect was much more pronounced for Poa annua than for Agrostis palustris plants. Poa annua plants that had been ice covered were mostly dead by late February, a period of about 40 days. Agrostis palustris plants in all treatments could tolerate temperatures below -200 C into April. However, plants from plots where the snow and ice were removed had reduced levels of cold hardiness.