Winter Summaries-
(Continued from Page 9)

were no differences in relative hardiness levels and the plant grew on normally after the freeze test, which might indicate that there was no damage from the treatments.

The Effect of the Plant Growth Regulator Primo on Winter Hardiness Levels (2004)

By J. Ross, M. A. Anderson and Darrell Tompkins

Turfgrass growth under winter covers in early winter and spring is thought to be a problem for overwintering putting green turf in cold climates. Considerable growth reduction in the spring under a winter cover was observed following a single fall application of Primo MAXX at an Alberta golf course. As a result, this trial was established in order to determine the effect of the growth regulator, Primo MAXX, on fall hardening and spring dehardening of annual bluegrass (Poa annua).

An initial pilot study was conducted during the winter of 2003-04 where a single application of Primo Maxx was applied at three different rates in the late fall to an annual bluegrass (Petersen’s creeping bluegrass) putting green located at the Prairie Turfgrass Research Centre in Olds, Alberta. Individual treatments were then subjected to various dehardening temperatures for various periods of time. After a freeze test, plants were re-grown and their relative hardiness levels were assessed. Due to an equipment failure during the secondary hardening stage results of the trial were inconclusive.

In year two of the study there were also no significant treatment differences when evaluating fall relative hardiness levels. Application rates and timing of Primo MAXX were evaluated in this study. For all treatments, the LT50 values for the plants were -19oC.

Spring hardiness levels will also be determined in order to evaluate the product for its effect on slowing the loss of hardiness as a result of temperature increases in the spring.


By Darrell Tompkins, J. Ross and M. A. Anderson

Ice cover on annual bluegrass (Poa annua L.) putting greens often causes damage in the cold climates of North America during long winters. The objective of this study is to evaluate various ice removal strategies for use on annual bluegrass putting greens. In addition, the various products were evaluated for their phytotoxicity (damage caused by the product) to the turf. An initial screening study was conducted in order to choose the best treatments for the field study. Selection of treatments was based on effectiveness (efficacy) and phytotoxicity of the products. Results of the three separate field tests showed that there was no benefit to covering the turf. As far as the individual treatments were concerned, the Landscape and Alaskan ice melters and the methanol softened the ice more than the other treatments. The two granular ice melters melted the ice the best and were best at reducing the bond between the ice and the turf surface. However, in year one these two products also produced some toxicity, while the other treatments did not.

Wear Tolerant Grasses for Use on Sports Fields in a Cold Climate (2003)

By Darrell Tompkins, M. A. Anderson and J. Ross

This trial was established in order to determine the wear and cold tolerance of various grasses for use on sports fields in the Prairie Provinces of Canada. An initial screening of 48 different grasses to determine their cold tolerance was conducted in a controlled environment during the winter of 2002-03. From this, 21 grasses were chosen for the field study component of this trial. In addition, Poa supina, a Poa supina and Touchdown Kentucky bluegrass mix, and the City of Calgary standard sports field mix were added to the treatment list. Cultivars of perennial ryegrass and tall fescue established more rapidly than did the Kentucky bluegrass cultivars, the Poa supina, the Poa supina/Kentucky bluegrass mix and the City of Calgary standard sports field mix. The perennial ryegrass cultivars that established most quickly were Fiesta 3 and Pick RC2, while Grande and SR8600 tall fescue were equal to the two perennial ryegrasses. On the second rating date, Touchdown Kentucky bluegrass, all four perennial ryegrasses and all six tall fescue were the top rated grasses for establishment.

The Effect of the Plant Growth Regulator Primo on Winter Hardiness Levels (2003)

By J. Ross, M. A. Anderson and Darrell Tompkins

Considerable growth reduction in the spring under a putting green winter cover was observed at an Alberta golf course, which prompted the development of this trial. As a result, the objective was to determine the effect of the growth regulator, Primo MAXX, on fall hardening and spring dehardening of annual bluegrass (Poa annua).


By Darrell Tompkins, J. Ross and M. A. Anderson

Ice cover on annual bluegrass (Poa annua L.) putting greens often causes damage in the cold climates of North America during long winters. The objective of this study is to evaluate various ice removal strategies for use on annual bluegrass putting greens. In addition, the various products were evaluated for their phytotoxicity (damage caused by the product) to the turf. An initial screening study was conducted in order to choose the best treatments for the field study. Selection of treatments was based on effectiveness (efficacy) and phytotoxicity of the products. Results of the three separate field tests showed that there was no benefit to covering the turf. As far as the individual treatments were concerned, the Landscape and Alaskan ice melters and the methanol softened the ice more than the other treatments. The two granular ice melters melted the ice the best and were best at reducing the bond between the ice and the turf surface. However, in year one these two products also produced some toxicity, while the other treatments did not.

Evaluation of Winter Covers for Prevention of Freezing Injury on Putting Greens (2001)

By J. Ross

This trial was initiated in the early winter of 2000 to determine the insulating value of various winter covers and whether there was an effect on winter injury, spring colour and plant hardiness levels. Nine golf green winter covers were compared against an uncovered control. Covers were installed on greens at four golf courses throughout Alberta. Temperatures were collected twice a month from November to the end of February and then three times per week in March and April to determine the effect of the covers on temperatures at the crown level of the plants. Colour rating, area cover and plants hardiness levels were also conducted in April.

The two sites at Innisfail and Edmonton were severely damaged from winter injury as these golf courses were without snow cover for most of the winter. Winter injury was as a result of freezing injury and dessication. Those covers that prevented less than 50% winter injury at Edmonton and Innisfail were Gridlock #2, TurfPro #1, and TurfPro #3. Those best covers that prevented winter injury at Calgary and Red Deer were TurfPro #3, and Gridlock #3 and #4.

(Continued on Page 12)
Winter Summaries-
(Continued from Page 11)

Those covers that insulated the greens from low temperatures in winter were Gridlock #3 and #4, and TurfPro #1 and #2. Those that showed the least insulation properties during low temperatures were the uncovered control, Albarrie #1, Gridlock #1 and #2, and TurfPro #3. Those covers that insulated against warm temperatures and kept the turf cool in the spring evaluations were Albarrie #1, Nilex #1, and TurfPro #1. Those that showed poor insulation properties and heated the turf were Gridlock #3, TurfPro #2 and #3.

There was the greatest retention of winter hardiness for annual bluegrass under the Albarrie #1, Gridlock #4 and TurfPro #3 covers. For creeping bentgrass the best hardiness levels were the uncovered control, TurfPro #3 and Albarrie #1. Those that showed the least hardiness for annual bluegrass were TurfPro #2 and Gridlock #3. Those that showed the least hardiness for creeping bentgrass were Gridlock #1, #2 and #4 and TurfPro #2.

Control of Winter Injury Caused by Ice Cover on Annual Bluegrass and Creeping Bentgrass (2000)

By Darrell Tompkins, Jim Ross and D. L. Moroz

A lab study compared the effect of ice cover and ice encasement with a control treatment (no ice) on annual bluegrass (Poa annua) and creeping bentgrass (Agrostis palustris) plants. Generally, snow covered plants maintained cold hardness much longer than plants that were ice encased. Cold hardness levels for the ice covered plants were intermediate between the other two treatments. This effect was much more pronounced for annual bluegrass than for creeping bentgrass. For annual bluegrass, after 60 days, cold hardness levels were -180 C for snow covered plants, -100 C for ice covered plants and -20 C for ice-encased plants. By 90 days, ice encased plants were dead. By 120 days, the ice-covered plants were dead. For creeping bentgrass, the same trend occurred, but the loss of cold hardness was greatly delayed. Therefore, at 150 days the snow covered plants had a cold hardness level of -20 C compared to -180 C for the ice encased plants.

A related field study compared the effects of: snow cover, snow removed in February, ice cover and ice removed in February for annual bluegrass and creeping bentgrass plants. Annual bluegrass plants that had been ice covered had very little cold hardness after 60 days and were dead by 5 days. Creeping bentgrass plants in all treatments could tolerate temperatures below -280 C after 90 days.

Evaluation of Winter Covers

for Prevention of Freezing Injury on Putting Greens (2000)

By Jim Ross

This trial was initiated to determine the insulating value of various winter covers and whether there was an effect on spring colour and plant hardiness levels.

Four golf green winter covers were compared against an uncovered control. The four covers were Evergreen permeable cover, Typar permeable cover, RPEâ Type 4 impermeable cover and an impermeable insulated turf blanket. Covers of 12 foot by 24 foot dimensions were installed on greens at four golf courses throughout Alberta.

Temperatures were collected twice a month from November to the end of February and then three times per week in March and April to determine the effect of the covers on temperatures at the crown level of the plants. Colour rating and plants hardiness levels were also conducted in April.

The insulated turf blanket showed the least fluctuations in temperatures while the RPEâ Type 4 cover showed the greatest heating. The insulated turf blanket and the RPEâ Type 4 cover had the highest colour ratings.

There was the greatest retention of hardiness levels under the insulated turf blanket when measured on April 10. The RPEâ Type 4 cover had the least amount of hardness. Hardiness levels were measured for the Innisfail site only.

Control of Winter Injury Caused by Ice Cover on Poa annua and Agrostis palustris (1999)

By Darrell Tompkins, Jim Ross and D. L. Moroz

A lab study was set up to compare the effect of ice cover and ice encasement with a control treatment (no ice) on Poa annua and Agrostis palustris plants. There were no significant differences between the ice cover and ice encasement treatments. Poa annua plants were dead after only 60 days covered with ice. In contrast, Agrostis palustris plants had LT50 values of -260 C after 90 days of ice cover and -160 C after 120 days of ice cover.

A related field study compared the effects of snow cover, snow removed in February, ice cover and ice removed in February for Poa annua and Agrostis palustris plants. Poa annua plants that had been ice covered were mostly dead by late February, a period of about 40 days. Agrostis palustris plants in all treatments could tolerate temperatures below -200 C into April. However, plants from plots where the snow and ice were removed had reduced levels of cold hardness.

A related field study compared the

effects of snow cover, snow removal in February, ice cover and ice removal in February for Poa annua and Agrostis palustris plants was also set up. In 1999, Poa annua plants that had been ice covered were dead after 60 days. Agrostis palustris plants in all treatments were able to tolerate temperatures below -200 C after 90 days.

The Use of Synthetic Covers on the Overwintering of Poa annua and Agrostis palustris Golf Greens (1999)

By C. E. Miluch and Jim Ross

A golf green cover trial was established late in the fall of 1999 at four different golf courses. One replication was established at Edmonton Country Club, Red Deer Golf and Country Club, Innisfail Golf Club and Riverbend Golf Club in Red Deer. The treatments included an uncovered control, Hinsperger Woven Permeable, LP Typar Permeable Geotextile, RPE Type 4 Impermeable and an Insulated Blanket. Temperatures under the cover and depth of snow on the trial were monitored throughout the winter period. LT50 values under each of the covers will be determined, as well as colour and overall turfgrass quality in the spring of 2000.

Control of Winter Injury Caused by Ice Cover on Poa annua and Agrostis palustris (1998)

By Darrell Tompkins, Jim Ross and D. L. Moroz

A lab study compared the effect of ice cover and ice encasement with a control treatment (no ice) on Poa annua and Agrostis palustris plants. There were no significant differences between the ice cover and ice encasement treatments. Poa annua plants were dead after only 60 days covered with ice. In contrast, Agrostis palustris plants had LT50 values of -260 C after 90 days of ice cover and -160 C after 120 days of ice cover.

A related field study compared the effects of snow cover, snow removed in February, ice cover and ice removed in February for Poa annua and Agrostis palustris plants. Poa annua plants that had been ice covered were mostly dead by late February, a period of about 40 days. Agrostis palustris plants in all treatments could tolerate temperatures below -200 C into April. However, plants from plots where the snow and ice were removed had reduced levels of cold hardness.