Winter Summaries-
(Continued from Page 9)

were no differences in relative hardiness levels and the plant grew on normally after the freeze test, which might indicate that there was no damage from the treatments.

The Effect of the Plant Growth Regulator Primo on Winter Hardiness Levels (2004)

By Jim Ross, M. A. Anderson and Darrell Tompkins

Turfgrass growth under winter covers in early winter and spring is thought to be a problem for overwintering putting green turf in cold climates. Considerable growth reduction in the spring under a winter cover was observed following a single fall application of Primo MAXX at an Alberta golf course. As a result, this trial was established in order to determine the effect of the growth regulator, Primo MAXX, on fall hardening and spring dehardening of annual bluegrass (Poa annua).

An initial pilot study was conducted during the winter of 2003-04 where a single application of Primo Maxx was applied at three different rates in the late fall to an annual bluegrass (Petersen’s creeping bluegrass) putting green located at the Prairie Turfgrass Research Centre in Olds, Alberta. Individual treatments were then subjected to various dehardening temperatures for various periods of time. After a freeze test, plants were re-grown and their relative hardiness levels were assessed. Due to equipment failure during the secondary hardening stage results of the trial were inconclusive.

In year two of the study there were also no significant treatment differences when evaluating fall relative hardiness levels. Application rates of Primo MAXX were evaluated in this study. For all treatments, the LT50 values for the plants were -19°C.

Spring hardiness levels will also be determined in order to evaluate the product for its effect on slowing the loss of hardiness as a result of temperature increases in the spring.


By Darrell Tompkins, Jim Ross and M. A. Anderson

Ice cover on annual bluegrass (Poa annua L.) putting greens often causes damage in the cold climates of North America during long winters. The objective of this study was to evaluate various ice removal strategies for use on annual bluegrass putting greens. In addition, the various products were evaluated for their phytotoxicity (damage caused by the product) to the turf. An initial screening study was conducted in order to choose the best treatments for the field study. Selection of treatments was based on effectiveness (efficacy) and phytotoxicity of the products. Results of the three separate field tests showed that there was no benefit to covering the turf. As far as the individual treatments were concerned, the Landscape and Alaskan ice melters and the methanol softened the ice more than the other treatments. The two granular ice melters melted the ice the best and were best at reducing the bond between the ice and the turf surface. However, in year one these two products also produced some toxicity, while the other treatments did not.

Wear Tolerant Grasses for Use on Sports Fields in a Cold Climate (2003)

By Darrell Tompkins, M. A. Anderson and Jim Ross

This trial was established in order to determine the wear and cold tolerance of various grasses for use on sports fields in the Prairie Provinces of Canada. An initial screening of 48 different grasses to determine their cold tolerance was conducted in a controlled environment during the winter of 2002-03. From this, 21 grasses were chosen for the field study component of this trial. In addition, Poa supina, a Poa supina and Touchdown Kentucky bluegrass mix, and the City of Calgary standard sports field mix were added to the treatment list. Cultivars of perennial ryegrass and tall fescue established more rapidly than did the Kentucky bluegrass cultivars, the Poa supina, the Poa supina/Kentucky bluegrass mix and the City of Calgary standard sports field mix. The perennial ryegrass cultivars that established most quickly were Fiesta 3 and Pick RC2, while Grande and SR8600 tall fescue were equal to the two perennial ryegrasses. On the second rating date, Touchdown Kentucky bluegrass, all four perennial ryegrasses and all six tall fescue were the top rated grasses for establishment.

The Effect of the Plant Growth Regulator Primo on Winter Hardiness Levels (2003)

By Jim Ross, M. A. Anderson and Darrell Tompkins

Considerable growth reduction in the spring under a putting green winter cover was observed at an Alberta golf course, which prompted the development of this trial. As a result, the objective was to determine the effect of the growth regulator, Primo MAXX, on fall hardening and spring dehardening of annual bluegrass (Poa annua).


By Darrell Tompkins, Jim Ross and M. A. Anderson

Ice cover on annual bluegrass (Poa annua L.) putting greens often causes damage in the cold climates of North America during long winters. The objective of this study is to evaluate various ice removal strategies for use on annual bluegrass putting greens. In addition, the various products were evaluated for their phytotoxicity (damage caused by the product) to the turf. An initial screening study was conducted in order to choose the best treatments for the field study. Selection of treatments was based on effectiveness (efficacy) and phytotoxicity of the products. Results of the field study that was conducted in March 2004, are preliminary in nature. The clear polyethylene and the no cover treatments appeared to be superior to the black polyethylene cover. As far as the individual treatments were concerned, the two ice melters, Landscape and Alaskan, appeared to soften the ice more rapidly than the other treatments.

Evaluation of Winter Covers for Prevention of Freezing Injury on Putting Greens (2001)

By Jim Ross

This trial was initiated in the early winter of 2000 to determine the insulating value of various winter covers and whether there was an effect on winter injury, spring colour and plant hardiness levels. Nine golf green winter covers were compared against an uncovered control. Covers were installed on greens at four golf courses throughout Alberta. Temperatures were collected twice a month from November to the end of February and then three times per week in March and April to determine the effect of the covers on temperatures at the crown level of the plants. Colour rating, area cover and plants hardiness levels were also conducted in April.

The two sites at Innisfail and Edmonton were severely damaged from winter injury as these golf courses were without snow cover for most of the winter. Winter injury was as a result of freezing injury and desiccation. Those covers that prevented less than 50% winter injury at Edmonton and Innisfail were Gridlock #2, TurfPro #1, and TurfPro #3. Those best covers that prevented winter injury at Calgary and Red Deer were TurfPro #3, and Gridlock #3 and #4.

(Continued on Page 12)