Water-Thirsty Golf Courses Need to Go Green

By FRANK DE FORD
Golf Writer

(Editor's Note: Over the next series of pages, articles about water and golf courses dating back to 1923 have been re-produced courtesy of the USGA Green Section and Golf Digest.)

* * *

I have always thought that golf courses are perhaps the finest collaborative work between God and man. Yes, only God can make a tree, but golf course architects can make trees seem prettier, and golf course superintendents can make the grass greener and the flowers brighter, so that even when you can't hit a fairway or sink a putt, it certainly is an awfully lovely place to be frustrated.

The only thing is, the whole experience, the whole sport, is utterly dependent on one thing: H2O ... water. And, of course, we don't have enough water any-

more for all the people on the earth. And, of course, whereas we lack oil, there are other forms of energy, but when we lack water we simply get thirstier. And a golf course is a selfish creature.

There are now approximately 16,000 courses in the United States — about half the total in all the world — and if you laid them out together, they would be as large as Delaware. And that Delaware of golf courses uses water, lots of it. They call them "greens" for a reason, don't they?

Audubon International estimates that the average American course uses 312,000 gallons per day. In a place like Palm Springs, where 57 golf courses challenge the desert, each course eats up a million gallons a day. That is, each course each day in Palm Springs consumes as much water as an American family of four uses in four years.

Now, granted, it's easy to pick on golf. It's a rich man's game, and when we see its stewards, they're always in military blazers and they're stuffy and pompous. But a great many people in golf are catching on. Eleanor Sterling, the curator for a magnificent exhibit about the water crisis that's been at the American Museum of Natural History in New York, tells me: "There are opportunities for the sport to adapt, and there are signs that it is doing so."

In its May issue, Golf Digest devoted a huge, candid article by John Barton to the subject, in which the magazine states very frankly: "Golf will face a crisis over water." And then it outlines what must be done. It won't be easy. Golf Digest points out, for example, that an incredible 41 percent of golfers polled believe that global warming is a myth.

But among the 59 percent of the enlightened golfers, the problem is being addressed. Perhaps as many as 1,000 courses are using recycled or reclaimed water, and the United States Golf Association has made that mandatory for some areas of the Southwest. New grasses are being developed that require less moisture to thrive. Overseeding is being frowned upon. Courses are being returned more to their natural state, so grass will often have to lose some of its sheen.

You see, at the end of the day, for golf to go green and accommodate itself to the real world, it's simply going to have to be much more brown.
Mr. Chairman and Gentlemen: I want to pay a tribute to and to thank Dr. Piper and his associates for the splendid work which they have been doing and especially as it affects us in the northwestern part of the United States. Ours is a new country; most of the courses are new.

There has developed recently a great interest in golf. I think there are 22 golf courses in the cities of St. Paul and Minneapolis today, and two-thirds of them have been built and organized within the last few years.

Now I hesitate to appear before an audience like this, of men so skilled and experienced in matters connected with the care of golf courses, but we in the northwest have been suffering in the last three or four years from extreme drought, with which I hear some of you gentlemen living near New Jersey and the seaboard have not been affected.

With us, the past season has been the fourth consecutive season of excessive drought. The records of the Weather Bureau show that in the area of which Minneapolis is the center, the rainfall for four years has been over five inches per year below normal. In the spring, when the rains were abundant, our fairways were in fine condition. As the summer heat came, however, the fairways dried up and the higher ridges became brown and burned hard.

In 1922 we conducted some experiments in breaking up or aerating by various methods the surface of the soil on these dry hard ridges. We tried a disk, but we found that an ordinary disk, with the blades set as nearly vertical as possible, would work all right on the higher ground, but as we dropped down into a hollow it would tear or mutilate the sod. We then tried a spiked harrow with the spikes set at an angle, but no matter how great the angle of the spikes, even though they were set in the line of the cut, this machine also tore the sod. "We then built a spiked roller on the principle of the spiked rollers which were used on the putting greens and with which you are familiar. This spiked roller was made out of cement poured into a cylinder of sheet iron punctured with holes at the proper places so that spikes would protrude. The spikes were quarter-inch iron boat-spikes 4 inches long with chisel-points. The points were put in line with the direction in which the machine would be hauled. This machine worked very satisfactorily. It broke up the surface of the ground thoroughly. On certain portions of the fairway we put the machine over once, on other portions twice, and on other portions three times, running it once north and south, and another time east and west, and crossing the cuts. This broke up the soil. Our theory was that when the rains came, with the soil broken up on the

(Continued on Page 9)
We have been cutting our course for 25 years. A great many members of the club vitally interested in the course felt that we had depleted the soil by constant cutting of the grass, and that our remedy lay in fertilizing. Therefore in the fall of 1922 we spent a large sum of money in top-dressing. We hauled in hundreds of loads of good rotted manure, and spread it all over the course, and seeded. The results appeared in the late fall. The grass came up, and in the spring we were very much pleased. But again when the drought came, this fine, tender new grass turned brown and faded away, not as badly as if it had not been fertilized, but still we lost that good growth of grass.

On the 1st day of May 23, we started a rotary sprinkler. That sprinkler was placed on the center peg, and the greenkeeper had orders to run that sprinkler every morning from seven until eight o'clock, irrespective of the weather, rain or shine. Before we started sprinkling, we seeded this area. In one quarter we sowed redtop; in the next quarter, bluegrass; in the next quarter, red fescue and in the last quarter, a mixture of 40 per cent bluegrass and 60 per cent redtop. Then in each one of these quarters, which was divided in half, we sowed the seed in different densities; that is, in half of the quarter where the redtop was we sowed at the rate of about 100 pounds to the acre, and in the other half at the rate of 200 pounds to the acre, which, of course, is intensive seeding. Then we started watering. Our fairways had already commenced to dry up in the latter part of April, when this watering was started, and by the end of May the results had become very
Watering in the 20s—
(Continued from Page 9)

apparent. The new seed had begun to show, and the old grass that was in there was green and healthy, and that little circle stood out from the rest of the fairway as though it had been painted with a brush.

Along the last of May and early in June the rains came, and then the rest of the fairway began to revive; and before long, when the benefit of the rains began to be felt, the surrounding fairway greened up, but it did not have as fine an appearance as the experimental area. During all this time, the area was cut with a power mower, passing over the area at the same time the surrounding fairway was cut, so that so far as the cutting was concerned it had exactly the same treatment as the rest of the fairway. Then in the middle of July the rains stopped and the drought came on, and we kept up the watering, and this piece of ground kept getting better and better; and day by day, as we watched it, and especially early in the morning when the dew was on the grass, we could see this new grass coming up everywhere — as the greenkeeper said, "as thick as the hair on a dog's back." The little fine grass grew up mingled with the knot-grass; it grew up through the areas where the dandelions were, and apparently was driving the dandelions out. The fairy rings began to show life, and they filled up, and by the 1st day of September we had as fine a piece of fairway as you gentlemen, who are all accustomed to the very best of golf courses, would want to play over.

The lie of the ball was practically perfect. And this fall, just before the snow came, we went on to it as a temporary green. And I want to tell you gentlemen that it was a pretty fair western green at that, right in the fairway.

Now this is not hearsay; it is something I have seen and something I know. I know that if we give that land water and seed we can maintain that fairway. Now the question which you gentlemen have in your minds is, of course, how can you accomplish this result over a fairway of 18 holes? A little experimental area of that kind is certainly simple. I do not, by any means, propose to have you infer for a moment that what we did was a new invention. I have played golf in California, as a great many of you have, and I have seen their irrigation out there; I have seen the apparatus which has been in use for a great many years at the Midwick Golf Club; I have seen the apparatus at the Los Angeles Country Club; I have seen the system of irrigation which Mr. Frank Woodward has installed near Denver, which is an open system with strictly an irrigation flow. With us it was a question of how we could best develop some plan along the lines of the California clubs, and perhaps improve on them, and which would not be prohibitive in the way of expense.

Now I want to say that, first of all, if you are going to sprinkle your fairways, it goes without saying you must have an adequate water supply.

We are fortunate in having a beautiful lake right on the border of our course, with unlimited soft water, and we have a powerful duplex pump, and a very, large storage tank, with a 4-inch main running out through the center of our course, with laterals reducing first to 3 inches and then to 2 1/2 inches, and at every putting green a 2 1/2 inch outlet. The methods of irrigation which I have mentioned seemed to us too expensive to operate, and not convenient. The California system consists of a pipe long enough to reach across the fairway, supported on pulleys, such as you have on shafting in a machine shop, with the hub bored out so that the pipe turns loosely on the pulley, and with holes bored in the top of the pipe; and by pushing the pipe up the fairway it sprays water on each side. At one time we tried the rotary system, which has been in use at some clubs — movable rotary sprinklers in gangs of two or three. At one time we bought one of those large rotaries, such as they use on the Common in Boston, and we used that in front of the putting greens to keep the approaches in good order; but that stream of water was too heavy; the drops were too large; it threw too much water, and it washed out the roots in the grass, although it did help to keep the approaches green. Now the system which we have developed is very simple. First of all, we laid a pipe parallel with the fairway, and we went to the nearest supply approach; a couple of men can take a rope, or you can take a little tractor and hitch on to one end, and the wheels whirl right around and the machine moves lengthwise. The boys working on the course call this machine "the sea serpent." As I say, these two sections are connected by a piece of 1 1/2-inch hose, in a U-shape, with a 45 degree elbow running into the end of each pipe. That makes it flexible. If there is a hill here and a hollow there, the machine accommodates itself to the contour of the ground. If you are moving up the fairway and the fairway is 60 yards wide at that point, and as you approach the putting green it narrows to 30 yards, you can do one of two things; you can have one section across the fairway, and the other at an angle, or you can move up in a V, whichever seems the most convenient, so that the machine does not reach out into the rough. Each machine is equipped with 150 feet of 1 1/2-inch hose. On each one of these sections are two risers of 5/8-inch pipe, with a rotary nozzle at the top of the riser, the riser being about four feet high, and these rotaries revolving on the top of that riser, so that on the two sections there are four rotaries, and when in action one stream of water from No. 1 laps over so that there is no gap between No. 1 and No. 2, or between No. 2 and No. 3; so that the entire area covered by the machine is thoroughly wet.

Now, when we are ready to operate, we go to an outlet and we put 150 feet of 1 1/2-inch hose on it and lead it down to the end of the pipe and screw it on and turn on the water. The rotaries begin to revolve, and you wet an area of 180 feet—about 60 yards. It will cover more if the wind is not blowing to disturb it; but absolutely under all conditions it will wet

(Continued on Page 12)
Watering in the 20s —

(Continued from Page 11)

60 yards in width by about 60 or 75 feet in length. After experimenting we found it would take about four machines of this kind to handle our course. On every golf course there are certain short holes where the fairway is of no consequence. We have four short holes where it is not practical or necessary to water the fairway. That leaves us 14 holes, and we found that four machines would satisfactorily take care of those 14 holes. We start a machine, and one man tends the four machines. The rig is very light and one man can push it; just roll it up the fairway, right up a hill. He turns on the water and lets his machine stand there and run for 40 or 45 minutes; or if it is a very dry spot he will let it run for an hour while he goes and tends the next machine; and when he has made his rounds he comes back and shuts off the water and moves his machine up to the next area that is dry.

We found that we would have to water the fairways in the daytime at present. We expect to water at night next year. A night crew waters the putting greens 8 hours every night. We found that we would have to increase our pumping capacity a little in order to carry all the fairway sprinklers and the putting green sprinklers at night; but that is a minor matter. We find the mechanics have figured out a method by which we can increase our pumping capacity this spring, so that we will do both the putting green watering and the fairway watering at night. We run 12 rotaries at night on the putting greens. We water 9 putting greens on Monday and 9 on Tuesday, so that every putting green is watered every other night for six nights in the week. We do not water on Sundays unless it is very dry. Those 9 putting green rotaries, together with 3 which we keep running on the tees on the dry places, are all regular night equipment. There are 4 rotaries on each one of those "sea serpents," so that the amount of water which is used by the 4 machines is a little more than you would use in watering 18 greens at night. Each rotary is just a riser with an arm and two outlets, a T-rotary. We figure these 4 machines will water the entire fairway once a week, which will be sufficient. That is what we have done.

One of the practical difficulties that we have found in building this machine, as a great many of you men who are mechanics would know, was to make it light and at the same time rigid. On the first machine with which we experimented the pipe broke or bent and we had a great deal of trouble, so that we devised a scheme of trussing.

These machines can be built for not to exceed $200 apiece; and we bought the pipe and put in the side line, including the labor, for $1,800. You could equip a course which was already supplied with an adequate water system somewhere from $2,500 to $5,000, including the machines.

1949

USGA JOURNAL

LET'S SAVE WATER

"The world is becoming increasingly aware of shortages of a raw material once thought inexhaustible, i.e., freshwater. There are a number of regions, such as Los Angeles, Cal.; Perth, Australia; Johannesburg, South Africa, and Tel Aviv, Israel, where large population densities combined with small annual rainfall give rise to situations where the future economic development is limited by the fresh-water supply." The article describes several possible methods and costs of demineralization of brackish water and states, "although the maximum present-day water cost for very highly valued crops is 30 cents per 1,000 gallons, a more reasonable maximum figure for moderate-scale agricultural uses is 10 cents per 1,000 gallons."

Notes on we’re Running Out of Water" by Pat Frank, This Week Magazine, p. 5, Nov. 6, 1949.

This article points up the alarming water shortage in a dramatic way. Scientists say that 1957 is the critical date when action will have to be taken if new sources of fresh water are not found. The article stresses the possibilities of tapping the oceans for fresh water and says that the Department of the Interior has asked Congress for 50 million dollars to find a way to obtain fresh water from the sea. The author says, "Hundreds of thousands of acres of irrigated lands are being kept in production only through serious over-pumping of the existing water supply..."The water levels of the reservoirs that feed Louisville and Indianapolis have dropped 40 and 50 feet, respectively.

"But the most critical areas are the great, expanding metropolitan districts of the nation where the population is jumping, constantly stepping up the use of water."

(Continued on Page 13)
Watering in the 40s—
(Continued from Page 12)

The article describes methods of purifying salt water, including the possible use of atomic energy, and ends with this thought: "There is no greater gift this country could give the earth than the perfection of techniques for transforming the sea into fresh water. And for our own good, we'd better do it soon!" The growing scarcity of fresh water is not an idle threat; it is real. Two recent references have been abstracted here to indicate the trend of thinking. To cite other references would serve no useful purpose.

During the educational turf conferences of the winters 1948-49 and 1949-50, USGA Green Section personnel stressed repeatedly the need for saving water on turf areas. Since 1945, Green Section research has been directed toward a program of growing the best turf possible with the minimum of artificial irrigation, using every known device such as: (1) Aeration of the soil to improve porosity and absorption and to reduce runoff; (2) More adequate fertilization to produce denser turf, which is the best-known method of saving water; (3) Emphasis on the turf grasses which have low-water requirements and high drought-tolerance. The Green Section expresses its considered opinion that funds for agricultural research may be used justifiably for turf research which is directed toward saving water. It is well known that, even in areas where water shortages are becoming critical, many turf areas regularly are overwatered. Agricultural and industrial interests should welcome the opportunity to support this phase of turf research because the savings in water largely will accrue to the benefit of agriculture and industry. We do not limit our thinking and our planning to golf course turf; we include all turf areas. We subscribe to the policy that the best turf for all purposes is that which is maintained with only sufficient water to keep it alive.

1953

USGA JOURNAL
AND TURF MANAGEMENT:
FEBRUARY, 1953

KNOW HOW TO WATER

By ROBERT M. HAGAN
DEPARTMENT OF IRRIGATION,
UNIVERSITY OF CALIFORNIA

To do a good job of turf irrigation, we must consider the rooting habits of grasses. If given an opportunity, grasses will develop surprisingly extensive root systems. It is commonly thought that the roots under turf are confined largely to the top six inches or certainly to the top foot. What are the rooting capabilities of turf grasses? The rooting depths of 15-months old plantings on a deep clay soil at Davis, Cal., were studied by measuring the extraction of soil moisture. The plots were irrigated deeply and then allowed to go without irrigation until the grasses wilted. When wilting occurred, all of the available soil moisture in the following soil depths had been extracted:

<table>
<thead>
<tr>
<th>Grass Type</th>
<th>Depth (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chewings fescue</td>
<td>8</td>
</tr>
<tr>
<td>Wahee fescue</td>
<td>10</td>
</tr>
<tr>
<td>F-74 fescue</td>
<td>10</td>
</tr>
<tr>
<td>Highland bent</td>
<td>12</td>
</tr>
<tr>
<td>Kentucky bluegrass</td>
<td>30</td>
</tr>
<tr>
<td>Merion bluegrass</td>
<td>30-36</td>
</tr>
<tr>
<td>K-31 (falk) fescue</td>
<td>36</td>
</tr>
<tr>
<td>Bermuda (U-3 and Common)</td>
<td>36+</td>
</tr>
</tbody>
</table>

In all cases considerable moisture extraction took place below the depths indicated.

Some roots were found at the five foot depth under Merion bluegrass and at the six-foot depth under the bermudas. The ability of grasses to root so deeply has not been considered in the preparation of sites for planting or in the irrigation management of turf areas. Of course, rooting depths will be less in shallow soils or where management practices have restricted root development. These data simply indicate the rooting capability of grasses under these conditions at this location. What practical application does this information have in turf irrigation? Such data help to answer the two basic irrigation questions: (1) how much water to apply and (2) how often to irrigate.

How Much Water to Apply

How do we decide how much water to apply? After a rain or an irrigation, a given depth of a well-drained soil will hold a certain amount of water, depending on its texture or particle size. This amount is called the field capacity. Any water applied in excess of the soil's field capacity will drain out. The drier the soil is at time of irrigation, the more water is required to wet a given depth. If the soil has been dried until the grass wilts (approximate wilting point). For example, to wet a two-foot depth requires one and one-half inches of water for sands, three inches for loams and five inches for clays.

Some turf is overwatered that is, more water is applied and soaks in than the soil will retain within the root zone of the grass. The surplus water drains down through the soil, carrying away nutrients and often creates soggy subsoil and consequently shallow roots.

Turf is often underwatered. For example, traveling sprinklers, as they are commonly used, usually apply only one third to one-half inch of water. If the soil has been dried out, one-third inch of water will wet only about five inches of a sandy soil, two inches of loam, and one inch of clay.

The superintendent should determine how much water his sprinklers are putting on. This may be done by using coffee cans as rain gauges. Uniformity of application can be checked by placing the cans in a line running out from the sprinkler. Many will be surprised to find how little water they are applying, especially near the fringe of the area hit by the sprinklers.

Where there is no appreciable surface runoff, the correct running time for sprinklers can be estimated if the rate of water application is known.

In many cases it is easier to let the sprinklers run until coffee-can rain gauges contain the depth of water required to wet the soil to the desired depth. If the sprinkling time is recorded, it can be used as a guide for future irrigations.

Remember that shallow rooting may be caused by repeated shallow irrigations or, in some soils, by application of excessive amounts of water. In either case, the shallow-rooted turf thus produced will then demand frequent irrigation to prevent wilting.

How Often to Irrigate

Our turf irrigation habits are often bad habits from the standpoint of soil characteristics and the needs of the grasses. Irrigation practices are usually set by habit, the calendar or what we are told are the special moisture requirements imposed by the use to which the turf is put. Let us forget, for the moment, these special demands and look at irrigation solely from the viewpoint of soil characteristics and needs of the grass. Consider the soil as a storage reservoir. The storage capacity within the root zone is determined by the rooting depth of the grass and by the difference between the amount of water retained by the soil after irrigation (approximates field capacity) and that remaining when the grass wilts.

(Continued on Page 14)
Watering in the 50s—
(Continued from Page 13)

(wilting point). The water held by soil between field capacity and the wilting point is called readily available water. Grass will not suffer a water deficit as long as roots are in contact with available water. Sandy soils will hold one-half to three-fourths inch of available water per foot depth of soil, loam about one and one-half inches, and clays about two and one-half inches.

How long will the supply of available water in the soil reservoir last? This depends upon weather conditions, particularly light intensity, temperature, humidity and wind. Trees and shrubs may compete with the grass for water and increase the drain on the soil moisture supply. The rate of water use differs from day to day and place to place. Even on a single piece of turf, water consumption may vary considerably according to exposure. Thus one cannot give accurate figures for water use.

As stated previously, the approximate number of days between irrigation depends on (1) the depth of soil containing roots which has been wet by the last irrigation, (2) the soil texture which determines the available water capacity and (3) the rate of water use.

Where the water use rate is one-inch per week, as is assumed in Chart No.2, a grass which has effective roots to a depth of 12 inches should not need irrigation on a sandy soil for three or four days, on a loam for eight days, and on a clay for thirteen days. If the effective rooting depth is 36 inches, then the grass should not require irrigation on a sandy soil for 11 days, on a loam for 23 days and on a clay for 39 days. Are these right? Have grasses been shown to go without water for such long periods of time without drying or loss of color?

The possibilities of infrequent irrigation are being studied at Davis. This past summer was one of the hottest on record, with temperatures above 90° and close to 100° F most days, and low humidity. On a deep clay soil, the 15-month-old grass slots did not show distinct wilting until the following periods had elapsed:

<table>
<thead>
<tr>
<th>Grass</th>
<th>Elapsed Days Before Distinct Wilting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merion bluegrass</td>
<td>14</td>
</tr>
<tr>
<td>Creeping fescues and bent</td>
<td>24</td>
</tr>
<tr>
<td>K-31 fescue</td>
<td>approx. 36</td>
</tr>
</tbody>
</table>

After these periods, the grasses were distinctly wilted but had not turned brown. The U-3 and common bermuda plots were irrigated by mistake after 36 days. Since beginning the experiment in June, the bermuda plots received only one irrigation up to the date of this meeting October 7). These data indicate that, where grasses are deep rooted, they can go for long periods between irrigations even in the hot, dry interior valleys. Some of you will say, "I can't do this with my turf."

I'll agree you can't if your roots are shallow because of shallow soil or management practices which have restricted root development. Shallow irrigation, very often the cause of shallow roots, results from application of too little water or from failure of the water applied to soak into the soil. Slow water penetration is a major problem with many soils. On these soils which take water slowly, deep irrigations without excessive runoff are difficult with much of the sprinkler equipment now in use. With such soils, more frequent irrigation may be necessary until measures can be taken to improve water penetration and minimize runoff. The more often a soil is irrigated, the greater the opportunity for compaction of the surface soil which further retards water penetration. Thus a vicious cycle is established.

Consider, for example, a grass which has an effective rooting depth of 24 inches on a loam soil. Within this depth of soil the previous irrigation should have stored about three inches of available water. If the water-use rate is one inch per week and, to be conservative, one plans to use only two inches of this water, then this turf should go at least two weeks between irrigations. We could supply the water needed by one two-inch irrigation every two weeks. But if we apply only one-third inch of water or because of slow water penetration only one-third inch penetrates, then we would have to irrigate three times per week or a total of six irrigations instead of one. The more frequent irrigations add to labor costs, waste water, magnify disease and weed problems and increase the opportunity for soil compaction. No good pasture operator would allow stock on his pasture for at least three days after irrigation to avoid trampling damage. We can't keep human livestock off the grass, but we can decrease the opportunity for compaction in this example by adding two inches of water to the soil in one irrigation instead of six light sprinklings.

This illustration should present us with a challenge to see what we can do to reduce irrigation frequency. To do this we must (1) use sprinkler equipment which will not apply water at an excessive rate, (2) cultivate turf areas where needed to improve rate of water penetration and (3) develop schedules and practices which permit sprinklers to remain in one place long enough to apply an adequate depth of water.

There has been a lot of talk about using too much water. You will note I have not said that we are necessarily using too much water, but in many cases we are watering far more often than would be required if full advantage were taken of the deep-rooting capabilities of the grasses. Generally, one cannot make a sudden change in irrigation frequency. If your grass is shallow rooted as a result of either dry or water-logged subsoils, gradually encourage deeper rooting by improving subsoil moisture conditions.

A good turf irrigator should know (1) the rooting depth of his grasses, what depth is being dried out between irrigations, and (2) how long sprinklers should be run to replace the soil moisture. Only if you have answers to these questions, can turf irrigation be put on a sound basis. Turf should be irrigated on the basis of soil characteristics and the need of the grass for water. Special turf uses may at times force us away from sound irrigation principles, but we should return to good irrigation practices whenever possible. Some type of soil sampling tool is a must for the good irrigator.

I haven't given you all the answers on how to water turf. We don't know all the answers. We hope our research program will help supply them. I believe we can now say with assurance that there are two simple rules to follow for good turf irrigation:

(1) Water deeply
(2) Water infrequently

The curse of irrigated agriculture is often too much water. In turf, the curse is sometimes too much water, but more often it is too little water, applied too often.
Irrigation costs in much of the nation are second only to labor. If we can increase our capitalization with the expectation of present and future savings of labor and water costs, the long-term savings may be worthwhile. Automatic irrigation systems are increasing in number, and the justification is long term economy. An automatic irrigation system has real value for the superintendent to the extent that it is a management tool. Without high management capability it may create its own costly problems. Automatic systems have not always resulted in the savings projected to justify them, and their management capability is the remaining good that can make the system worthwhile or - by its lack - a burden.

We can all recognize the good of economical operation. But automatic irrigation has come to us without our being prepared. We have not known what to ask of it in the way of management capability. We are still experimenting and improving, still discovering new things we want our system to do. We need to develop our criteria for high management capability as soon as possible. The longer we take, the more systems will be installed that are inadequate and soon become obsolete. I propose six criteria I should want to use in buying a system.

1) The irrigation design should be adequate. In the Northeast where a sprinkler system is used to supplement a generally adequate rainfall, second- and third-class design is used, and is tolerable. In the irrigated West where one depends fully upon irrigation, only first-class design should be used in an automatic system. The most sophisticated controller is only as good as the system it controls, and the controller cannot make up for deficiencies in the system. In the West, not only is the single fairway line wholly inadequate but also first-class agricultural sprinkler: design is inadequate on turf. With the compaction and traffic it receives, turf has lower infiltration rates than agricultural soils. Application rates are apt to be too high, and the higher they are the more inefficient the operation, the more water is wasted. Also, agricultural crops send out roots through a large volume of soil holding hundreds to thousands of gallons of water. The large root system compensates in part for inadequacies of application. More water is taken from the wet areas, less from the dry. The turfgrass plant, on the other hand, may explore only a few cubic inches of soil and have only a part of a cubic inch of water available after an irrigation. The only water available is that which enters the soil immediately beneath the plant. There is no adjustment possible between an area that receives too little and one a couple of feet away that receives too much. Inadequacies of sprinkler irrigation are illustrated by a bowling green irrigation system worked out by Tom Byrne, Farm Advisor in Alameda County, Calif. If much effort to develop the best system possible, 5 per cent of the green was underwatered and 45 per cent received more than twice the needed water. This illustrates the inadequacies and inefficiencies of even the best sprinkler design.

2) The minimum programmed time should be about two weeks. There are two reasons to want this: (a) In the spring, water applied more often than needed greatly increases weed germination and establishment. (b) Deep rooted fairway grasses such as bermudagrass will conserve water - will use it more economically only if forced to by use long intervals between irrigations. Water is held with increasing tension by the soil as it dries, and bermudagrass can respond with physiological adaptations which enable it to survive and grow with less water. For these reasons we want at least a 14-day program time.

3) Different stations within the controller must be able to have different automatic programs. Shrub have different requirements from turf. Bermudagrass requirements differ from those of bluegrass; those of shade turf from grass in the sun; those of fairways differ from those of the rough. If you can irrigate the grass in the shade, for example, every six days, while that in the sun is irrigated every three, you end up irrigating everything according to the needs of the most demanding area of shallow-rooted turf. You should not have to manipulate the controls by hand every few days to get this difference in program.

4) A single station within the controller should be capable of being programmed differently (and independently) on different days. Turf has more roots near the surface, fewer at deeper depths. When the surface layer has dried, soil of the root zones may still contain adequate water. However, there are not enough deep roots to take up water fast enough to meet peak needs. Consequently, afternoon wilt develops. A tensiometer-controlled irrigation program at UCLA has given results indicating how we may most economically apply water to use the whole root zone and still avoid mid-day wilt. Their records indicate that the most economical program is one that applies about two shallow irrigations before applying a deep leaching irrigation. The controller should be able to handle this program without need to reset it.

5) There should be a ratio control so that all stations within a control box can be changed with a single setting and so that each station puts on water in the same proportion to the others as it did before. The reason for this is the wish to meet the change in demand with change of the seasons. A box should be reprogrammed about 10 times a year for optimum water economy. If each station were to be reprogrammed individually, some systems I have seen would require 10-20 days per year of skilled management time. This discounts much of the labor saving advantages.

Also, suppose you have one station set so that it controls sprinklers in the north shade and another controls heads on a sunny south slope. By trial and error you have adjusted them so that the first puts on about 35 per cent of the second, and both meet the demands of the areas they control. It is unlikely that you could reset these several times a year and still maintain this difference. As a result you would like to be able to set one control and change every station within the box by a proportionate amount.

6) The controller should be able to apply any single irrigation as a series of repeated short irrigations.

(Continued on Page 18)
Watering in the 60s—
(Continued from Page 15)

One difficulty of sprinkler irrigation is that efficiency of application is obtained only at high application rates - rates that are too high. At these rates efficiency of infiltration, of use, is low. Too much water runs off and high spots are left dry. One of the great potentials of automatic irrigation is the possibility of solving this dilemma. By using a high degree of overlap we can increase our efficiency of application but at application rates that are too high. However, the turf mat is able to hold a fraction of an inch of water.

By applying water at a high rate for a short time the water is held in the sponge of the mat until it infiltrates the soil. The application is repeated again and again at spaced intervals until the full application is given. The system operates at a high capacity throughout the interval it is on, but at a single spot, the mean application rate averages out to a suitably low value.

At present all controllers have some of the features I have asked for - none has all. The manufacturer will design a controller with what he considers to be sales features unless you can tell him what you need - what you demand. Automatic irrigation is still young, and controllers will continue to undergo a slow evolution. You can hasten that evolution with a clear statement of your needs and wants.

An example of good use of existing equipment to provide flexible management is provided by the new system at the San Francisco Golf Club, engineered by Don Hogan. Each station of the controller controls heads of similar elevation and exposure.

Each station is set for a short irrigation period (a few minutes) and the times are adjusted (by trial and error) to compensate for differences due to sun, shade, slope, elevation, etc., so each receives a proportion of water appropriate to the area. The entire controller is itself controlled by one station of another controller in the superintendent's office. This two echelon system permits the superintendent easily and quickly to change his program to exercise management flexibility.

A long irrigation is given by allowing a large number of cycles to repeat, a short one by repeating only a few cycles. With the water applied in short cycles, the effective rate of application is reduced, which helps to increase wetting of dry areas and to reduce runoff.

Having a suitable automatic system is not enough. Poor use of it can lead to problems. With poor operation one often sees a tremendous increase in crabgrass and other weeds during the second season of operation.

A new system is not automatic in its programming; the program must be set up by trial and error. The best tool for programming is a soil tube. You must know where the water is going, and nothing beats the soil probe for examining a large number of locations in a short time. Wet and dry soil are easily distinguished, so that you can determine how deep your water is going and whether you are wetting the entire root zone or only part of it.

Once the system is programmed it still requires management to achieve goals of water economy.

The advertised "set it and forget it" exemplifies the abdication of management. The following offers some guidelines for management use of an automatic system after you have it.

7) Patrol the system regularly.

Operating at night the system is out of sight and often out of mind. Damaged heads, malfunctions, or vandalism may go unnoticed until they show up as dry turf.

In a schoolyard a missing head went unreplaced for over a year. A geyser every night caused a permanent wet spot, and the loss of pressure created doughnuts around other heads. But the system was run by a custodian who was uninterested and who responded to the brown turf by increasing the irrigation time. Diddling the controller will not replace a missing head. Patrol for missing or damaged heads, heads not turning, heads cocked at an angle, heads set too low so that they operate under water, or heads blocked by overgrown grass.

Check nozzles periodically. An inexpensive set of drills provides a good set of plug gauges for checking nozzle sizes. At longer intervals check pressures at the nozzle with a Pitot gauge. Low pressures may indicate hidden leaks, worn nozzles, corrosion, or dirt blockages. Start slowly in the spring. Irrigate as infrequently as you can, but when you irrigate, apply enough to wet through the root zone. This will assist greatly in keeping down crabgrass and other weeds. The cracks that develop as the soil becomes dry will help get the water in with reduced runoff. 3. For economical water use, change the program according to the season. Use will depend on the solar energy input. This is affected primarily by the angle of the sun's rays, length of days, and degree of cloudiness. Weekly difference in turf water use tends to be small near the solstices, large near the equinoxes. Economical water use in the irrigated West will require about 10 changes of program a year, each involving at least a 10 percent change in water use. In any location, East or West, close control of water application can be achieved by adjusting water application to parallel loss from a Bureau of Plant Industry evaporation pan. This is a pan 6 feet in diameter, 2 feet in depth, set flush with the ground and having the water surface about 4 inches below soil level.

4. Avoid daily wetting. Daily sprinkling leads to heavy invasion of crabgrass, Poa annua, dallisgrass, and other weeds. Daily sprinkling keeps the soil at moisture levels where it is most subject to compaction from traffic. Compaction is our biggest turf problem. Daily sprinkling keeps the soil at its lowest infiltration rate so that waste from runoff is maximum. Daily sprinkling stops the cycle of wetting and drying, shrinking and swelling which restores soil texture and aids soil aeration. Daily sprinkling favors disease, buildup of lawn moths and promotes a soft growth readily injured by stress.

5. Know when to make an exception to Number 4. Sometimes in the middle of summer two or three days of over-irrigation will stimulate the grass, help wet up dry spots, leach salts and improve appearance. Again in late August a few days of heavy irrigation may help relieve summer stressed areas so that they begin to recover. Also, when summer disease has injured roots, a daily sprinkle may keep grass alive until new roots form.

6. Decrease irrigation by increasing intervals. When cutting down on water use after the summer peak, decreasing irrigation frequency is preferable to giving shorter irrigations. More frequent irrigation favors weeds and abuses the soil as discussed above. In addition, remember: a little water does not wet the soil a little bit - a little water wets a little soil and leaves the rest dry.

Several years ago I presented some irrigation design formulas based on plant soil relationships. These are very useful for checking out a system and finding weak points in it. Their usefulness is limited by the fact that often we do not have figures for evapotranspiration and infiltration rates to insert into the formula.

However, if we are concerned with the worst month in the worst year in a series of dry years, we can use an ET figure of 2 inches per week and an infiltration rate guessed at 0.1 inch per hour. For a low ET and a high infiltration rate we can use 1 inch per week and 0.5 inch per hour as...
Watering in the 60s—
(Continued from Page 18)

exploratory values. Even though inaccurate, these values used in the formulas will often point out system weaknesses and indicate the kind of compromises that will need to be made.

1981

Effective Use of Our Natural Resources

by MELVIN B. LUCAS, JR., CGCS
President, GCSAA
Piping Rock Club, Long Island

WHEN YOU ARE about to waste anything, stop for a moment and consider the energy needed to produce it. It has been said that half the world could exist on what the other half wastes. No commodity illustrates this statement more than the most taken for granted commodity on earth - water. It is the most wasted, overused, and the most precious natural resource in many areas of the world.

While I was attending Penn State University, in 1961, Dr. Fred Grau cited the importance of water as described in the 1955 Yearbook of Agriculture, and he emphasized its usefulness in fine turf culture. His address had a great impact on many of us at that turf conference.

Since then many others have described the role that water plays in proper management of turf for golf. For example, in some of the proceedings of golf turf conferences held over the past few years, Dr. James Watson has addressed the critical water problems we must face. Within the last few years many have come to agree with the water use ethic of Sandy Tatum, past president of the USGA, and with the arguments presented in numerous articles by Joe Dey that have appeared in Golf Digest on the overuse and waste of our most precious commodity.

During the recent drought in the Northeast, articles concerning the water shortage have appeared daily within the first three pages of the New York Times. Restaurants have stopped providing water at tables unless requested, and motels have requested that people conserve water during showers, etc. How we respond to these conservation measures will determine whether or not we experience the crisis of a water shortage.

It is interesting to note the remarks of the people who visit clubs of the stature of the National Golf Links of America, Shinnecock Hills, Maidstone, Winged Foot, Baltusrol, Pine Valley, Saucon Valley, and other courses that play so well. They comment on the firm, fast greens and the tight fairways that allow the clubface to come in direct contact with the ball. The golf course superintendents at these clubs all describe the same type of management philosophy: "Try to keep it as dry and close cut as possible." Several years ago the Monterey Peninsula and Marin County, in California, were brought to their knees for lack of water, and in the Midwest many golf courses experienced water use restrictions. This year some of the courses in New Jersey were prohibited from using water on any turf areas.

How can we cope with this dilemma?

Grants from various turf organizations, such as the GCSAA, USGA, state and regional turf foundations and chapters of the GCSAA, provide money to develop permanent grasses for drought tolerance. Through continued research, many improved turfgrass cultivars will be developed. Through research and practical experience, several valuable lessons have been learned. Avoid overstimulating turfgrasses with nitrogen early in the spring, for they will grow when they are ready. Second, irrigation should be used only to keep the grass alive and to sustain adequate growth.

Following is the description of an experience I had involving irrigation and turf management. When I arrived at Garden City Golf Club 15 years ago, I was confronted with maintenance problems created by the overuse of water. Bunker facings near several greens eroded after every irrigation and were eventually refaced with grass. The utmost in discomfort to any golf course superintendent comes with the realization that the course is predominately Poa annua. Annual bluegrass requires more water than permanent grasses, and the more you water it, the more it requires. This results in a never-ending management problem. I felt that 85 percent of the Garden City Golf Club turf was annual bluegrass, but as a result of a pump house failure on July 4, 1966, my estimate proved to be on the low side. On Long Island we are compelled to submit a meter reading each month to the Water Resources Commission. When I arrived at Garden City I called the Water Commission for reports. The water use total for 1965 had been slightly over 55 million gallons. Reports from prior years showed that water use had increased each year after 1958, when a new irrigation system had been installed. By 1978, the number of gallons used for irrigation had been cut to 12 million, and even then I felt I was overwatering.

The ability of the superintendent to coordinate golfers' demands with agronomic needs will determine the success or failure of the golf course management program. In my experience as golf course superintendent, I have observed that golfer requests and complaints significantly influence the management of golf courses and the priorities of their superintendents. Some of the members' advice and comments have included: "The greens don't hold, so give them a good soaking." "Annual bluegrass is indigenous to this part of the country and no one will ever get rid of it. Let's not waste our money on Poa controls." "We have our own well and the water is free and unlimited, so why not use it? Doesn't more water mean greener grass?"

"We want everything green and lush to impress our guests." "We were out this morning and we saw an area burned out on No. 7 fairway (you know, that high knoll in the drive zone), so why isn't the course being watered more? It's dying!"

"We saw the golf tournament on TV ... what happened to our course? It just doesn't compare." "Why do they (grounds crew) have to renovate during prime playing time in late August or early September? If they had better control of operations during the year, this wouldn't be necessary."

However, to put all this in proper perspective, we must presume that if we overwater, the soil will often be filled to capacity and turfgrass root growth will be reduced. This will ultimately lead to soil breakdown, compaction and annual bluegrass and weed invasion. Experiences around this country and Europe have shown me that annual bluegrass is indigenous to the fine turfgrass world, growing profusely on all continents. So why don't we just seed new courses to Poa annua rather than bentgrass? To do nothing about it means only disaster during hot spells of summer, not to mention the winter problems and inclement springs when Poa annua is the most severely injured species. Yes, for many clubs water is free, but in 1971 I calculated our electricity cost to be $.0003 per gallon. That may seem reasonable until we consider that over 12,000,000 gallons were used. This cost

(Continued on Page 20)
more than $3,600. Since 1977, the cost of electricity has tripled. With overwatering, we will of course need extra fertilizer, more chemicals to control disease and, naturally, more frequent mowing. Does the result of this vanity outweigh the added expense? Because of the attention given to the high dry spots on fairways, the fate of the entire course is in jeopardy. The amateur agronomist sees golf courses on television at their peak a few Sundays each year through the wonderful world of color. If equal attention is paid to the player and the quality of turf for that tournament, there is no question that our course doesn’t stand up to that comparison. However, it sometimes is too bad that television doesn’t come back weeks later to show the same course as it is prepared for regular membership play. During the season we have all seen approaches to greens that are wet, soft and soggy with little grass and many weeds. The greens are so wet that algae have turned them black, and disease, carried by surface water, has eradicated grass faster than a nonselective herbicide. When excess water has finally drowned all the turf, then out comes all machinery (the aerifiers, thatchers, slicers, spikers and, yes, even rototillers) to try to bring the golf course back. Requiring all this extra work of an already small crew, much of the normal everyday work is let go, making the course look even worse.

"A rule of thumb used by many is to try to put back the same amount of water that was taken out the day before."

The expense of all this unnecessary renovation, at an inconvenient time, certainly points out the folly of overwatering the course. There is an old adage which states that it is easy to put water on but it is almost impossible to take it away. A rule of thumb used by many is to try to put back the same amount of water that was taken out the day before. Many superintendents play "Russian roulette" with nature during the summer. Water is not applied until the last hope of rain has faded for that night. Then the ultimate of management weapons, the automatic irrigation system, allows the superintendent to take every day as it comes. A cloudy, overcast day results in little or no water loss. A hot, humid day results in little water loss. Rain forestalls watering that day and possibly the next. Hot, dry days and those with cool or hot breezes tend to trigger the use of the water system at times of the day that raise the ire of the golfers. This is called syringing. What this does is to slow the evaporation-transpiration rate and thereby stop the plant from wilting. Some superintendents have found that a dew syringe cycle used every morning for five minutes on each fairway head tends to keep the fairway turf in good shape for the day. This also applies to greens and tees, but the time must be increased slightly. The critical concern is that turf managers should not go into August with an overly wet soil.

Augusts in the New York metropolitan area are generally hot and humid and just bloody uncomfortable for man and, yes, grass. So, to give the turf half a chance, all our season’s watering efforts should be geared for the dreaded months of July and August. With the improper management and wasteful consumption of water by so many people, it is no surprise that there is a severe water shortage in many areas of our nation. We all must share the burden of conservation; if we do not, we will have...
only ourselves to blame if and when the well runs dry!

The Changing Scene

ALL PROGRESS comes in steps. Those who would make advances in any field must first know what has come before and where things stand at present. Though each step taken is important, some prove more pivotal than others. The following is a selection of developments that have been made in the golf course management field in the 60 years since the founding of the USGA Green Section.

Greens

For many years Dollar Spot and Brown Patch were the most feared diseases, especially of bentgrass greens. And there was but one reliable fungicide, corrosive sublimate, which could quite readily cause turf damage itself. To maintain current standards, more than a half dozen other diseases must be managed as well. Today, however, some 20 distinct control materials, plus many combinations, are available. "Pushed-up" greens were the norm, generally using unmodified soil scavenged from the site. After 10 years of intensive research, the Green Section published Specifications for a Method of Putting Green Construction in 1960. These have since been refined. From the first, Green Section efforts were directed to developing improved bentgrasses for greens. By 1924 the Washington and Metropolitan strains had been selected. At the close of World War II, five more Green Section selections were in commercial production, and Dr. Burton Musser's Green Section-supported breeding program was underway at Penn State. This was to produce by the early 1950s the first improved bentgrass that could be grown from seed, Polycross (Penncross) creeping bentgrass. From this same program, now directed by Dr. Joseph Duich, another improved seed-propagated strain was released in 1978, Penneagle.

In 1946 turf research began under Dr. Glenn Burton at the Georgia Coastal Plain Experiment Station in Tifton. This Green Section-supported program developed the bermudagrass hybridization work that has completely changed the nature of southern golf courses - on tees, fairways and roughs as well as greens. The first release in the early 1950s was Tiflawn (Tifton-57), followed by Tiffine (T419) in 1960, and Tifdwarf in 1965. Work is continuing to develop a fine-textured bermudagrass with greater cold tolerance for the transition zone conditions.

Topdressing in the 1920's was an arduous task, being distributed either by hand with shovels or by manually drawn spreaders. Today's equipment is motorized. With some, 18 greens can be topdressed by a crew of three in a morning.

Materials and rates have changed. At one time the Green Section discouraged topdressing because excessively high rates of silt and clay caused layering problems and drastically reduced water and air infiltration. Today's lighter and frequent applications of materials have been a great help in producing excellent putting surfaces and healthy turf. Attempts to monitor putting green speeds began as early as 1929 with the Arnoit Mechanical Putter, a pendulum mounted on an adjustable tripod. But it was not until the USGA modified a device made by Edward Stimpson, a former Massachusetts Amateur Champion, and undertook to develop it that a reliable way to categorize green speeds existed. With the help of the Stimpmeter, the USGA has been able to help clubs to achieve uniformity in the putting characteristics of all greens.

Tees

In the 1920s teeing grounds were small, often only several hundred square feet in size, and wet sand from tee boxes was mounded up as a perch on which to tee the ball; now we have wooden pegs for tees. We also have much heavier play; consequently today's tees are built much larger. Standards of tee maintenance have drastically changed. In former years tees at many courses were cut by the fairway mowing units. Today most are cut with green-type mowers, and otherwise managed with nearly the same intensity as are putting surfaces. One of the steadily growing practices is the periodic overseeding of divot scars on tees. Many different grasses are used.

Fairways

Fairways used to be established mostly with common bermudagrass (south) or with common Kentucky bluegrass and some fescue. No more. The Tif-series of bermudas now provide the measure of excellence in fairway turf, but they cannot be grown everywhere. The first improved grass for northern fairways was Merion Kentucky bluegrass. Today nearly 50% of this country's fairways have Merion or one or more of the 50 elite bluegrasses that have since been developed. Along with the inferior grasses in use before 1950, weed problems were tremendous. In the 1920s crabgrass was even considered by some as desirable in fairways. Many cultural manipulators were researched by the Green Section in those early years to maximize the competition ability of the turf in this unending battle against aggressive weeds. These investigations achieved considerable improvements in turf culture, and formed the scientific foundation from which have come today's techniques in areas such as mowing, turf fertilization and pest control. Perhaps of greatest significance was the recognition in 1944 by Acting Green Section Director Dr. Fanny Fern Davis of the potential for selective broad-leaf weed control in turfgrass of the chemical 2,4-D, being investigated as a growth regulator at the time. Within just a few short years it was no longer necessary for golf courses to fight their worst enemies, dandelions and plantain, with an assortment of chemicals almost as likely to "burn out" the turf as the weeds.

It took a while longer to mount a successful campaign against crabgrass. Even though many courses were doing well with cultural programs, establishing better grasses and pest control to minimize crabgrass germination opportunities, it was not until 1952 that investigation of pre-emergence control materials began in Ohio and at Purdue under Dr. William Daniel, who was only the second man to have earned a Ph.D. degree in turfgrass management. (The first was Dr. James Watson, from Penn State in 1949.)

In the early 1950s, Dr. Fred Grau, then the Green Section Director, once commented that to grow good turf, the insect pests must be controlled and that "with the excellent insecticides available ... there is no excuse for permitting insects to bring crabgrass into otherwise good turf." He was speaking primarily about mole crickets in bermudagrass, chinch bugs in many areas, cutworms, sod webworms and the rapidly spreading Japanese beetles. The insecticides were lead arsenate, DDT and chlordane - none of which is any longer available for use on turfgrass. Today's turf insecticides are predominantly organophosphates, which in general have a higher acute mammalian toxicity, higher cost and shorter effective life span than their predecessors. In the manufacturing boom which followed World War II, machinery

(Continued on Page 22)
Watering in the 80s –
(Continued from Page 21)

specially designed for golf course use began to a ppear by 1947 a machine for "tubular time for king" and the "motorized caddie cart" had made the scene. The first was badly needed for improving rootzone aeriation and the penetration of water and fertilizer and for relieving the surface compaction that was already a serious problem.

Today most courses have at least one aerifier. Roughs In the early 1920s roughs often grew up to three feet high in the spring and it was common for them to be cleaned of accumulated organic debris through controlled burning every couple of years. In order to ease maintenance and stem the complaints about lost golf balls, roughs began to be cut more often and shorter through World War II. Today most roughs are predominantly an "improved" turf species, usually receive some irrigation, occasionally are fertilized or limed, and are mowed regularly. Undoubtedly the changing nature of roughs has been greatly influenced by developments in various aspects of turf management, most especially in mowing equipment. The first tractor-drawn mowers replaced horse

Reinders Inc. Continues to Grow,
Distributor Adds Sales Representatives

Reinders, Inc. is pleased to announce that four new sales representatives have joined the company to help serve the Minnesota market.

Dale Parske is the new Western Region Sales Manager. He brings more than 35 years of industry experience in sales and golf course management. Dale resides in Lakeville and can be reached at 952-250-8742.

Jeff Schmidt is a Territory Manager responsible for sales and product support for golf customers in the west metro and outlying areas of Minneapolis. Jeff has 18 years of industry experience, including 6 years as an assistant golf course superintendent. Jeff resides in Eden Prairie and can be reached at 952-237-0160.

Scott Gilbertson is a Territory Manager responsible for turf and aquatic sales and product support for customers in Minnesota and western Wisconsin. Scott has 19 years of industry experience, including 5 years as a golf course superintendent. Scott resides in Holmen, Wis. and can be reached at 608-790-7667.

Bill Gauwitz is a Territory Manager responsible for sales and product support for golf customers in east central and southeast Minnesota as well as west central Wisconsin. He has been a certified golf course superintendent for 20 years and a member of the GCSAA for the past 32 years. Bill can be reached at 507-269-0230.

Reinders is a full service distributor of products to the commercial green industry.

MGCSA Membership Report

NEW MEMBERS

Brandon Gauster
Class A - GCSAA (pending)
Oak Marsh Golf Course
Oakdale, MN
W: 651-730-8886

Joe Davelaar
Class SM - GCSAA
Luverne Country Club
Luverne, MN
W: 507-283-4383

Darin Luebben
Class C - GCSAA
The Lafayette Club
Minnetonka Beach, MN
W: 952-471-0170

Michael Copley
Class C - GCSAA (pending)
Oak Marsh Golf Course
Oakdale, MN
W: 651-730-8886

James Wahl
Affiliate
Principal Financial Group
Minnetonka, MN
W: 952-277-4333

- Respectfully submitted by Brian Brown
MGCSA Membership Chair