How to Determine the Actual Product Being Applied in Your Fertilizer Program

By Tom Skinner
Vigoro Industries
Specialty Products Territory Manager

In determining a fertility program, there are as we know, many factors to consider. Some of which are: How much N.P.K. will be the most beneficial in our management program? What nutrient sources do we want to use? How long do we want the nutrients to be available? What ratio of N. to P. to K. do we want? Do we need minors? The list of decisions can go on and on.

As we all know the fertility program is only a part of the overall management practices used in promoting quality turfgrass; however, fertilizer used properly can enhance desired results and aid in the overall success of our programs. Everyone has his or her own criterion used to monitor the success of a fertility program. It may be turf color, or density of growth rate, or root depth, or tolerance to stress or the ability to recover after stress. All of these are good, but the criterion used can only be made by the turfgrass managers in their particular circumstance.

It becomes apparent that with all the decisions to be made, a thorough knowledge of the plant nutrients you are applying to the turf and what you can expect by their use is most important. You must decide what nutrients you want to apply and then purchase product based on anticipated results and cost according to what your budget or bid provides. It is not uncommon to determine the cost of a fertilizer program based on the number of weeks the nutrients are available. Also the amounts of each nutrient is important. EXAMPLE: Should a nitrogen source release over a period of twelve weeks, you could base the cost factor by taking the cost per acre and divide by (12) the number of weeks for feeding. This would determine a weekly cost per acre.

In the case of a three-week material, divide the cost per acre by (3) to determine a weekly cost. The question then has to be, is a fertilizer analysis with a ratio of 20% slow release nitrogen that feeds for 12 weeks and 80% of the nitrogen that feeds for three weeks considered a three-week or a 12 week material? The answer is that it is neither a three week or a 12 week material. A product or a portion of a product has to be judged and cost accounted for by the results delivered to the individual. The reason this is mentioned is because with the literally hundreds of fertilizer analyses available, the purchaser must have the ability to look at a product breakdown and compute the percentages of the nutrients they will receive based on the label or the literature description. Purchases have been made based on cost with the intent of purchasing a slow release type material that in reality has a very low percentage of slow release.

In this article my objective is not to compare one source of plant food to another or to compare one product line to another or to suggest one particular analysis over another. My objective is to provide some information and math formulas that can be used to breakdown a fertilizer analysis. Product information is provided by all fertilizer companies on their analysis and can be found on the bags, on the specification sheets and on the literature. With this information we can determine exactly what is being applied to the turf areas. That coupled with knowledge of what to expect from each plant food will allow individuals to take any product and equate a cost based on what they are receiving. In dealing with cost it is impossible to compare one fertilizer analysis to another based on cost per bag, cost per ton or cost per acre, without knowing the breakdown of the product you are using or are planning to use. I will illustrate by using two fertilizer analyses for examples. I suggest looking at the products you presently use to determine if you're getting what you want and what you are paying for.

All fertilizer analyses are based on percentage per ton of the plant nutrients listed in the analysis. EXAMPLE: fertilizer with a 24-4-12 analysis is 24% of 2,000 lbs. actual nitrogen, 4% of 2,000 lbs. actual phos. and 12% of 2,000 lbs. actual potash. The same holds true for all nutrients listed in a fertilizer analysis. The analysis itself does not determine the cost of the material. The costs are determined by the products that make up the analysis. EXAMPLE: 24-4-12, the nitrogen percentage is 24%; however, the make-up of nitrogen is derived from three different sources. We are 1.6% ammoniacal 10.8% W.I.N. from IBDU and 11.6% urea W.S.N. This information is listed on the bag as well as our literature and specification sheets, as it is with all fertilizer companies. By totaling the three nitrigenous that make up 24-4-12 you see they total 24%. With this information you can now mathematically compute how much of each nitrogen source you're applying to your turfgrass.

The first step is to find out how much total N.P.K. and other nutrients are contained per bag. The second step is the coverage per bag and the number of bags needed per acre.

(Continued on Page 30)
or per M to apply the amount of plant foods or total N. you desire. The math formula to determine N.P.K. plus other nutrients is to take the nutrient percentage X the weight of the bag, and divide the total by 100. Note: make sure you have the proper bag weight due to a number of different bag weights available. Step 1: 24-4-12, 24% N. x 50 lb. bag =1200 divided by 100 = 12 lbs. actual N. per bag. 4% P. x 50 = 200 divided by 100 = 2 lbs. actual P. per bag. 12% K. x 50 = 600 divided by 100 = 6 lbs. actual K. per bag. .7 MG x 50 = 35 divided by 100 = .35 MG per bag. 5% S x 50 = 250 divided by 100 = 2.5 lbs. S per bag. .4% Fe. x 50 = 20 divided by 100 = .2 lbs. Fe per bag. Step 2: Determine actual N. desired and multiply amount by 43.56 the number of 1,000 sq. ft. per acre, for instance, .5 lb. N. desired per M x 43.56 = 21.78 lbs. actual N. needed per acre.

To determine the long term release percentage of this product we would take the amount of W.I.N. being applied 19.602 lbs. divided by 43.56 total N. being applied to find that 45% of the nitrogen applied is W.I.N. long term release. To complete the math for total nutrients being applied we see that there is 7.26 lbs. P. 21.78 lbs. K. 1.27 lbs. Mg 9.07 lbs. S and .726 lbs. Fe. being applied per acre at 1 lb. N. with 24-4-12. These numbers are important when you are putting your program together with them you can accurately compare what you are receiving from one product to another.

The next analysis we will look at is 32-3-8. The math series is the same as before. 32% N. x 50 = 1600 divided by 100 = 16 lbs. total N. per bag. 43.56 divided by 16 = 2.7225 bags per acre to apply 1 lb. N. 2.7225 x 50 = 136.125 lbs. material per acre divided by 43.56 = 3.125 lbs. material per M sq. ft. to deliver 1 lb. N. The nitrogen breakdown of 32-3-8 is 1.2% ammoniacal 3.6% W.I.N. from IBDU 6.1% CSRUN (Coated Slow Release Nitrogen) 21.1% urea W.S.N. Total N. sources = 32% N. To total nutrient sources being applied, we again take the total of each product per bag x the number of bags being applied per acre. Math series 1.2% ammoniacal x 50 = 60 divided by 100 = .6 x 2.7225 = 1.63 lbs. ammoniacal per acre. 3.6% W.I.N. x 50 = 180 divided by 100 = 1.8 x 2.7225 = 4.90 lbs. W.I.N. per acre. 6.1 CSRUN x 50 = 305 divided by 100 = 3.05 x 2.7225 = 8.30 lbs. CSRUN per acre. 21.1% W.S.N. x 50 = 1055 divided by 100 = 10.55 x 2.7225 = 28.72 lbs. W.S.N. per acre. To determine long-term release percentage, we take the IBDU W.I.N. 4.90 lbs. per acre plus the CSRUN 8.30 = 13.20 lbs. slow release being applied per acre.

In conclusion, study fertilizer math. Compare what you are receiving in different products.