Your golfers won’t care that Insignia® fungicide offers excellent brown patch and summer patch control. Or that it suppresses dollar spot and controls gray leaf spot and pythium blight better than Heritage®. But the better turf it delivers will attract plenty of attention. You’ve been warned.

Find out more: turffacts.com
Find a turf care supplier:
800-545-9525

We Don't Make The Turf.
We Make It Better.™

Always read and follow label directions.
Insignia is a registered trademark and Better Turf and We Don't Make The Turf. We Make It Better. are trademarks of BASF. Heritage is a registered trademark of a Syngenta Group Company. © 2007 BASF Corporation. All rights reserved. APN 07-14-002-0024
Successful organizations empower their staffs to develop strong working relationships with clients.

Continued from page 70

Professional Products in the Seattle area, agrees. "It sounds cliché, but to me superior service means several things: doing more than the customer expects and more than the competition is willing to provide," he says.

Here's a quick list of things that annoy me most regarding poor customer service:

- Rudeness or shortness on the phone, as if the rep is doing you a favor by helping you.
- Talking with a sales agent in a store and having another customer walk up (or worse, an employee) and the sales agent deserts you (usually with an "excuse me") and proceeds to help them first.
- Calling customer service and not being able to reach a live human being. An old trick is to press "0," but more and more this option is not working. Which leads to the question: Why are they taking this option away from us? Is it because they don't want to talk to us?
- A salesman coming unannounced and expecting you to drop everything and have a meeting with him. I've had guys I've never met actually sit down in my office and start pitching their products while I sit at my desk with a stunned look on my face.
- Major commercial Web sites that do not offer phone numbers for assistance. Have you ever noticed that when you try to contact a company for help online, you hardly ever see a list of support people by name? Why?
- Calling customer service and being told "our computers are down, so we can't help you at this time." Every company should have a back-up plan for this, which would prevent people from saying, "We can't help you at this time." It could be as simple as keeping a paper and pencil nearby. Then a person could write down your problem, tell you they'll get to it as soon as they are up and running again, and then contact you to confirm the action was taken.
- Salespeople who won't go the extra mile for you. I've come to expect the 110 percent from guys like Mike Erb and Shane Riley that when I don't get it from others in the field, it almost feels like I'm not getting what I deserve. Sure, it's probably unfair to expect your local vendor to run you up some fungicide on a Sunday evening or at 5 a.m. on Monday so you can spray ahead of golfers in an emergency. But when one or two guys do it for you without hesitation, then how can the others compete?

When one of the five or six local fertilizer/chemical companies hires a new sales representative, which most of them seem to do every couple of years or so, I'm always up front with the new guys. I tell them right off in our first meeting that I give 70 percent of my business to Wilbur Ellis and Mike Erb, and they are basically competing for a share of the remaining 30 percent. That is how important I view strong customer service.

Erb agrees with the philosophy of creating a strong client/salesman relationship.

"Successful organizations encourage their outside sales staffs to develop strong working relationships with their clients," he says. "They empower their sales representatives with the freedom to work with their customers to create effective working strategies."

Most significant transactions are grounded in personal contacts and personal relationships. There is a quote from Henry Ford that, although might not have exactly been describing a salesman/client relationship, seems utterly perfect for that analogy. Ford said: "Coming together is a beginning. Keeping together is progress. Working together is success."

What this world needs is more people who care about you and what you are trying to do. In our case, it's to help us make as great of a golf course as possible within the confines of our budgets. Although I spend a lot of money with him, I doubt that I'm Mike Erb's biggest client. But you know what? He treats me like I am. And that's what we're all looking for.

I often find myself in the local hardware store in the town where I work. The prices are outrageous compared to the big-box home-improvement chains, and you wonder how these places stay afloat. But about once a month or so I go there. I'm greeted at the door. I'm checked on a couple of times as I breeze the small, cramped aisles. I talk weather and gas prices with the clerk as I pay for my overpriced wasp spray or marking paint. I keep going back because they give a hoot. And so do I.

Golfdom Contributing Editor Ron Furlong is superintendent of Avalon Golf Club in Burlington, Wash.
Tank-mix RHAPSODY® fungicide with a reduced rate of a chemical fungicide for more effective disease control and greener, healthier turf.

NOW THAT'S GOOD CHEMISTRY

Keep greens greener and fairways fairer with RHAPSODY fungicide. RHAPSODY controls a broad spectrum of bacterial and fungal diseases - including Brown Patch, Anthracnose and Dollar Spot - and helps keep your turf looking, as well as playing, great. Quality turf begins with RHAPSODY.
WHY AN ASGCA MEMBER?

When it's time to develop or remodel a golf course, look for the “ASGCA” designation after the golf course architect's name.

“Experienced” describes every member of the American Society of Golf Course Architects:

• **Years in the field:** ASGCA members average 25 years in golf design. Before an architect can even apply for associate membership he or she must have at least eight years experience as a practicing golf course architect.

• **Courses designed:** Most ASGCA members have designed and renovated dozens—and, in some cases, hundreds—of layouts worldwide. To even be considered for membership, a prospective member must have designed the equivalent of at least five 18-hole golf courses.

• **Peer reviewed:** The multi-year application process includes comprehensive, in-person evaluations of the applicant's golf courses, discussions with clients, and a detailed look at plans and specifications.

Contact ASGCA at (262) 786-5960 or www.asgca.org for a list of members and publications written to guide golf course developers and owners through the remodeling and development process.

ASGCA
125 N. Executive Drive, Suite 106
Brookfield, Wis. 53005
Phone: (262) 786-5960, Fax: (262) 786-5919
www.asgca.org
Soil Compaction Prolongs Establishment

Specifications should steer seedbed preparation and construction projects

By W. M. Dest and J. S. Ebdon

Wear and soil compaction are the major cause for turfgrass stress under intense traffic typical of golf courses and athletic field turf. That traffic can be broken down into two separate stresses, wear and soil compaction (Carrow and Petrovic, 1992).

Wear stress affects the shoot system of turfgrass plants resulting in crushing and bruising injuries. Compaction alters the physical properties of the soil affecting water and air movement, seedling emergence and root penetration, which in turn affects shoot vigor. While there have been numerous studies to evaluate these factors separately, few studies have been conducted to assess which of these two factors have the greatest influence on plant stress and what is the effect of their interaction.

The objectives of our research were, first, to differentiate between the influence of wear and soil compaction and their interaction on turfgrass stress, and second, to compare the effects of soil compaction between a native soil and sand rootzone on their physical properties conducted in the field.

Materials and methods

Field studies were established on a native silt loam and sand rootzone in 2004 at the Joseph Troll Turf Research Center, University of Massachusetts Amherst. The treatments were set out in a randomized block design with three replications on each soil.

Plot size was 4 feet by 4 feet. The compaction treatments were applied using a wear simulator on silt loam plots, wear was applied to shoot tissue by adjusting a steel brush into a frame to reduce the influence of wear on soil compaction.

Continued on page 76
TABLE 1

<table>
<thead>
<tr>
<th></th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>Oct. 7</td>
<td>Nov. 4</td>
</tr>
<tr>
<td></td>
<td>Jan. 4</td>
<td>Apr. 20</td>
</tr>
<tr>
<td></td>
<td>May 19</td>
<td>June 7</td>
</tr>
<tr>
<td></td>
<td>June 29</td>
<td></td>
</tr>
<tr>
<td>Soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt loam</td>
<td>48.3</td>
<td>80.0</td>
</tr>
<tr>
<td>Sand rootzone</td>
<td>24.2</td>
<td>24.6</td>
</tr>
<tr>
<td>Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Compaction-treatments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compaction</td>
<td>33.3</td>
<td>43.3</td>
</tr>
<tr>
<td>Noncompaction</td>
<td>39.2</td>
<td>61.2</td>
</tr>
<tr>
<td>Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>NS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant at P <0.05, 0.01, and non significant (P > 0.05) respectively.

+ Visual estimate for percent cover 0 = no cover, 100 = 100 percent cover.

Continued from page 75

Vibro-Tamper prior to seeding the plots to insure that the soil was compacted to at least a 6-inch depth below the surface.

Plots were sown with a seed mixture comprised of 25 percent Kentucky bluegrass (Poa pratensis L.), America and Touchdown and 75 percent perennial ryegrass (Lolium perenne L.), Fiesta 3, Express, Cutter on Sept. 14, 2004. The plots were visually rated for percent cover beginning Oct. 7, 2004 through June 29, 2005. Turfgrass quality was rated visually beginning in June 2005 on a scale from 1 to 9 (9 = best, 6 = minimum acceptable).

Wear treatments were simulated with a steel brush set into a frame in which the height of the brush can be set so that injury to the leaves can be adjusted through the setting and to compensate for mowing height (Photo 1, page 75).

The number of oscillations on the wear plots ranged from 75 on Sept. 13, 2005, to as many as 200 on Aug. 24, 2006. Wear ratings were taken immediately after treatments using a scale of 1 to 9 (1 = severe wear with 50 percent bare ground showing, better than 6 was the minimum acceptable, 9 = no injury). Recovery from injury was rated several days after the wear treatments using the same 1 to 9 scale. A light reflectance meter (Spectrum Technologies, CM 1000 Chlorophyll Meter, Plainfield, Ill.) also was used to assess injury one day after injury ratings were taken.

Penetration resistance was measured using a Proving Ring penetrometer with a cone point having a base of 0.98 square inches and a conical base area of 1.9 square inches. Leaf turgidity was determined on all available non-senescing, fully developed leaves using the formula \([\text{fresh weight-dry weight}}/(\text{turgid weight-dry weight})\) times 100. Turgid weight was measured after soaking leaves in distilled water for 12 hours. Leaf strength was defined as a measure of the tension (in grams) required to reach the breaking point and tear a leaf blade in half.

Leaf strength was determined on five randomly chosen, fully developed leaf samples per plot for Kentucky bluegrass and perennial ryegrass. Leaf strength is reported averaged across species. Leaf strength was measured using Shimpo Digital Force Gauge (Model FGS-50H; Nidec-Shimpo America Corp., Itasca, Ill.). Five 0.9-inch diameter plugs were taken from each plot and stand count by species was determined and expressed as percent Kentucky bluegrass. Shoot growth was measured as five days of cumulative growth collected above the 1.25-inch mowing height.

Photo 2

Wear injury on sand plots the day of wear treatment, Aug. 24, 2006.
Make every satellite controller on your course think like a central.

The Aurora™ Central Control System from John Deere Golf Irrigation. It's called "intelligent programming" and it separates our Aurora System from all other irrigation management systems. With Aurora, you don't need a central control system, giving you the flexibility to control your entire irrigation system from any controller on your course. Each Aurora controller can also monitor, store, and share data from multiple sensors across the network. And you can write a program for every controller from any controller on the course.

The Aurora Central Control System. It's the smartest choice in golf course irrigation. For more information, see your local John Deere One Source distributor.

www.JohnDeere.com
TABLE 2

Mean turfgrass injury ratings, chlorophyll index and recovery ratings for wear and nonwear treatments over soils for September 2005.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sept. 13</th>
<th>Sept. 22</th>
<th>Sept. 14</th>
<th>Sept. 28</th>
<th>Sept. 22</th>
<th>Sept. 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear</td>
<td>5.00</td>
<td>4.50</td>
<td>3.64</td>
<td>2.17</td>
<td>6.75</td>
<td>5.17</td>
</tr>
<tr>
<td>Nonwear</td>
<td>7.50</td>
<td>7.08</td>
<td>4.09</td>
<td>2.54</td>
<td>6.75</td>
<td>7.25</td>
</tr>
</tbody>
</table>

Significance

**, NS significant at P<0.01 and non-significant, respectively.

† Injury rating 1 = severe with 50% bare ground, >6 = no injury from wear, 9 = no injury, excellent quality.

++, Chlorophyll measurement taken one day after wear.

+++ Recovery rating taken 9 and 6 days after wear respectively; rating > 6 indicates no wear injury; 9 = no injury, excellent quality.

Results

The rate of stand establishment was significantly faster in the silt loam than the sand rootzone on all dates that ratings were taken through June 7, 2005 (Table 1, page 76).

Plants growing on the sand rootzone received 7.2 pounds of nitrogen, 2.8 pounds of phosphorous, and 4.6 pounds of potassium per 1,000 square feet. The silt loam plots received 4.2 pounds of nitrogen, 1.4 pounds of phosphorous and 2.8 pounds of potassium per 1,000 square feet during the same time period. There was no difference in grass cover by June 29, 2005 (Table 1).

Soil compaction significantly reduced the rate of stand establishment over both soils through the fall/winter and into June 7, 2005, in all but one of the dates visual estimates for cover were made (Table 1). Most of the reduction in percent cover was associated with the sand rootzone. The data suggests that soil compaction as a result of construction activities and during seedbed preparation can have a profound effect on turfgrass establishment. Our experience has been that soil compaction from construction activities is a major problem that needs to be addressed since it can significantly postpone establishment and in turn delay the start of scheduling sporting events.

There was a significant compaction by soil interaction on penetration resistance on three out of the four dates that penetration measurements were taken. Greater penetration resistance is closely associated with greater compaction and potentially mechanical impedance to root penetration. Penetration values were significantly greater on the compacted versus the non-compactd treatments within soils, likely a result of an increase in soil strength due to an increase in bulk density. Penetration resistance was also significantly greater in the silt loam versus the sand rootzone due to the silt loam’s cohesive property. Sands rely largely on frictional properties for soil strength.

There was significant wear injury noted on the wear treatments over the two soils Continued on page 80
Now, the #1 fire ant control comes with fertilizer. Multitaskers rejoice. There's one solution that controls fire ants and nourishes turf. Just one application of TopChoice® + fertilizer reduces fire ant mounds up to twice as fast as TopChoice alone and controls fire ants for a full year. It also combats mole crickets and other pests while treating fire ants. With convenient spread rates and a variety of fertilizer options, you're sure to find the TopChoice fertilizer that's right for your turf. And you can apply it any time of year. Save time, money and protect your turf in one easy step. TopChoice + fertilizer is Backed by Bayer and all the science and support that comes with it. Call your local formulator or distributor and ask for TopChoice + fertilizer today.
Continued from page 78

immediately after wear was imposed on Sept. 13 and Sept. 22, 2005 (Photo 2, page 76; Table 2, page 78).

The chlorophyll index taken the day after wear treatment also showed the extent of bruising from wear. There was a highly significant correlation between visual ratings and the chlorophyll index on Sept. 14 and Sept. 23, 2005. The turf had fully recovered from the Sept. 13, 2005, wear treatment when compared to the non-wear treatment shown by the Sept. 22, 2005, ratings (Table 2).

However, turf had not fully recovered from the second wear treatment taken on Sept. 28, 2005. This may be a result of the greater number of oscillations imposed at the second wear treatment or because the ratings were taken within a shorter time frame than in the first wear treatment.

The compaction and wear treatments had little effect on turfgrass quality during the 2006 season. However, turfgrass quality was affected by soil type. Turfgrass quality was significantly better on sand compared to silt loam plots during the spring. Conversely, superior turfgrass quality was observed in the silt loam during the summer months (July, August and early September) compared to the sand plots.

There was significant wear injury observed on wear-treated plots over the two soils immediately after wear was imposed on June 19, July 6, and Aug. 29, 2006 (Table 3, page 78). There was significantly more wear injury on the sand plots compared to silt loam plots on the Aug. 24 rating. Compaction had no effect on wear injury. During recovery (Table 3), there was significant injury noted on all dates. However, on the Aug. 29 rating, there was no leaf injury observed from bruising although plots were still thin.

Kentucky bluegrass decreased significantly in the population relative perennial ryegrass in wear-treated plots and in compacted plots compared to noncompacted treatments.

The data at the time of collecting samples suggests that perennial ryegrass exhibited greater wear and compaction tolerance than Kentucky bluegrass. Lower leaf turgidity and greater leaf strength have been shown to be associated with greater wear tolerance (Brosnan et al., 2005). However, there was little difference observed with leaf strength and leaf turgidity between soil and compaction treatments. No difference was observed in dry weight over all treatments in 2006.

Conclusions

Stand establishment was reduced significantly by the compaction treatment indicating the need to minimize soil compaction during construction activities and seedbed preparation by setting strict specification.

Penetration resistance was increased due to compaction with the larger increase occurring on the native silt loam than on a sand rootzone largely due to its greater soil strength. There was significant injury from wear on both soils. However, there was significantly less injury from wear in the silt loam plots compared to the sand rootzone.

Turfgrass quality was better in spring on sand plots while silt loam plots afforded superior quality in summer. Kentucky bluegrass populations in mixture with perennial ryegrass decreased significantly as the result of soil compaction. There was little effect from compaction and wear treatments on dry weight, leaf strength and leaf turgidity. This study will continue into 2007 to evaluate the influence of wear and compaction and their interaction on turfgrass stress.

W. M. Dest is associate professor emeritus at the University of Connecticut Storrs. He is also a sports turf consultant specializing in the physical properties of soil.

J. S. Ebdon is associate professor of turfgrass management at the University of Massachusetts Amherst.

REFERENCES

