SPOT REMOVER.

Nothing hits the spot for dollar spot control and other diseases of turf and ornamentals, like SysTec 1998®. It is the most effective broad spectrum systemic fungicide for curative and preventative control. It also affords the best protection for the money. Use it as a foliar spray or drench treatment, SysTec 1998 gets the job done.

Tank mix it with any other fungicide for comprehensive control. SysTec 1998 controls dollar spot, fusarium blight, brown patch, anthracnose and others and provides on the spot systemic protection that keeps working for weeks after application. SysTec 1998 – it’s spot remover packaged in handy flowable and WDG formulations.

THE BROAD SPECTRUM SYSTEMIC FUNGICIDE FOR HEALTHIER PLANTS.
Real-Life Solutions

• PRECISION GREENS MOWING

So Much for Scalping

Superintendent, former assistant invent “collar pipe” to correct common maintenance headache

BY MARK LESLIE

With visions of table-saw guides dancing in their heads, certified superintendent Ray Viera and his former assistant Rob Larsen brainstormed their way to eliminating scalping and “moving greens” at Four Streams Golf Club in Beallsville, Md.

“All superintendents have scalped collars, and we have completely eliminated that,” Viera says.

Choosing a walk-behind greens mower that would be dedicated to the cleanup cut on all the greens, Viera and Larsen, who now works for LESCO, drilled a series of holes on top of the clippings basket and attached what they call the collar pipe.

The thinking that they needed something that would stick out like a guide on a table saw fostered the idea. The L-shaped collar pipe has a 90-degree joint, so that it hangs out 30 inches from the roller on the mower and points to the outside edge of the collar.

As long as the downward pipe is lined up with the outside of the collar, Viera says a green can’t be scalped. “It eliminates narrowing of collars and any other cutting problems associated with an operator who does not do the same pass each time,” he adds.

The collar pipe, which can pivot and reverse directions, makes a perfect circle, Viera says, adding: “It’s like the pivot point on a compass. As long as you have the pipe lined up, you can’t stray from that orbit.

Sometimes you see a triangular cut of grass in the cleanup, but we never have that here anymore.”

Noting that operators normally “free-hand” the cleanup cuts so that they’re never the same, Viera says another key besides the dedicated mower is a dedicated person on that mower.

“This type of innovation enables us to design the bunkers and other features closer to the putting surface,” says Steve Smyers, the architect of Four Streams. “This allows these features to fit more in context with one another and also allows for the development of greater strategy and risk-reward.”

Asked how they got the idea, Viera replies, “Out of necessity.”

Perhaps the old saying — “necessity is the mother of invention” — is true.

Leslie is a freelance writer from Monmouth, Maine.

Problem
Scalped greens damage grass, arouse angry comments from golfers and create myriad headaches for superintendents.

Solution
Create a “collar pipe” that guides the mower around the edge of the green like a guide on a table saw. The device has eliminated scalping at Four Streams Golf Club, according to the superintendent.
Decisions, decisions.

The Standard Golf Magnum Tool Line...We can take on any job.

No matter what the job, Standard Golf has the tools you need...Magnum Tools. What separates them from other tools is their tough, high-grade aluminum/magnesium construction and twist and gusset bracing to eliminate head-to-handle wobble. Magnum Tools may be tough, but that just makes choosing them even easier. Ordering is easier, too...call 866-SG-EXPRESS to talk with a company representative or work with your local distributor. With so many tools to choose from, the easy choice is Standard Golf.

For toll-free express service, call 1-866-SG-EXPRESS (1-866-743-9773).

We've Got It All.
Never underestimate a golfer’s appreciation for superior turf.

Primo MAXX™ creates course conditions that can bring golfers out in droves and enhance game performance. Primo MAXX, the premier PGR in the industry, helps elevate turf to a new
level of playability. For more information on Primo MAXX, call your Syngenta representative at 1.800.395.8873.

Primo MAXX
Plant Growth Regulator

www.sygentaprofessionalproducts.com
Compound the silliness of narrowing and lengthening courses is the impact of unregulated technology on modern golf’s problems of slower play.

More than a few owners can probably relate to Cog Hill Country Club owner and operator Frank Jemsek’s slow-play-related revenue declines. In the busy summer months, his courses are getting less play — not because golfers have lost interest in the Lemont, Ill., facility, but because so many players tire of waiting for greens to clear.

Armed with hot balls and drivers, many golfers are now able to drive the green on a short par 4 or get home in two on a par 5. These shot types prevent golfers from playing holes in a timely fashion because they have to wait until the players in front of them have finished on the green. This slowdown backs up all of the golfers behind them.

The waiting also means tee times need more space between them, and with Cog Hill rounds taking longer and only so much sunlight in the day, some customers are being turned away while others are forced to play fewer than 18 holes. Not only does waiting lead to fewer rounds on busy days, golfers leave the course dissatisfied with their rounds. But the waiting problem isn’t relegated to Cog Hill — it has affected the professional ranks, too.

In 2003, the PGA Tour instituted a new set of guidelines and fines for players “put on the clock” too many times. The Tour practically jumped for joy when the average 2003 round decreased by 10 minutes to — get this — just four hours and 37 minutes, and that’s with no lost balls.

At the recent Honda Classic, a new course debuted and featured thought-provoking green complexes created by antistrategist Tom Fazio. Jay Delsing opened the third round as a single and took a mind-boggling three hours and 23 minutes to complete a round by himself. The rest of the field played in twosomes and took more than 4.5 hours to finish 18 holes. Yes, the players are slow, but unregulated technology has thrown designs out of whack, adding more of those painful five- and 10-minute waits.

At the Nissan Open this year, every group waited for the par-4 10th green to clear (that rarely used to happen). Just a few years ago, the course’s back nine par 5s were only reachable in two by a few players. Now just about every group waits for those greens to clear.

The overall effect of the tepid play is brutal. Crowds are bored, players look numb and perhaps it’s not a surprise that attendance is flat everywhere you look outside Phoenix and the Majors.

In contrast, John Daly, Luke Donald and Chris Riley provided a glimpse into the world of fast play during the 2004 Buick Invitational’s sudden-death playoff. Each pulled their clubs and played — no pacing, no twitching, no backing off, no painful preshot routine and, most of all, no waiting.

Faced with declining 2004 television ratings, PGA Tour commissioner Tim Finchem was asked by Golfweek to name his favorite moment of the “West Coast Swing.”

Finchem instead pointed out what was not his No. 1 moment: “I picked on Chris Riley about this. If he makes the putt at 18 in San Diego (in his playoff against John Daly at the Buick Invitational), we go into the 60 Minutes time frame [and] our ratings go up probably a full point. Chris crushed me.”

Sliding into the 60 Minutes time slot may allow the PGA Tour to convince networks that their “product” is healthy. But a full point ratings bump won’t help the rest of golf. Fewer waits and faster rounds will.

But as long as technology goes unregulated, the slow play problem will only get worse.

Geoff Shackelford’s latest book is The Future of Golf in America: How Golf Lost its Way in the 21st Century, and How to Get it Back. He can be reached at geoffshackelford@aol.com.
In 1998, researchers at the University of Maryland discovered a new disease of creeping bentgrass caused by an unidentified species of Ophiostoma. Through morphological and molecular study, it was shown that the pathogen constituted a new species, Ophiostoma agrostis, and the disease was named bentgrass dead spot. Subsequently, O. agrostis was found in Texas and Florida causing dead spots in hybrid bermudagrass greens. The disease is now referred to as dead spot.

In creeping bentgrass grown on putting greens, dead spot appears initially as small, dime-sized spots that may increase up to 3 inches to 4 inches in diameter. During early stages of disease development, the spots are reddish-brown and often are confused with other turfgrass diseases such as dollar spot, copper spot and microdochium patch. Spots also may be mistaken for damage from black cutworms or ballmarks, which commonly are found on putting greens.

In the later stages of dead spot development, grass in the center of the spots becomes tan, while leaves in the outer edge appear reddish-brown. Patches may be distributed throughout the putting green or localized, and generally do not coalesce. Spots often form depressions or pits and may severely reduce the quality and playability of the putting surface.

Active dead spot infection centers generally appear in areas with full sun and good air circulation. Initially, O. agrostis infection centers occur predominantly along ridges, on mounds and south-facing slopes of greens. These areas generally are associated with higher soil temperatures and often are the first to exhibit drought symptoms. The aforementioned conditions generally result in higher levels of plant stress and may reduce the defense capabilities of bentgrass plants.

Dead spot only has been found on newly constructed greens or on older greens that were fumigated with methyl bromide. The disease generally develops within one to two years of establishment, but outbreaks have been observed in creeping bentgrass greens less than 1 year old and as old as 6.

With few exceptions, dead spot is most severe during the first year of symptom

Continued on page 60
TIRED OF LOOKING FOR GRUBS?

Relax. No matter what species you find, when you get Merit® you get rid of grubs. It nips every major grub type from egg-lay through second instar. And application timing isn't critical because of its residual power. So get off your knees. Keep your course in great shape. Get guaranteed, season-long control with the most effective grub eradicator on the market. Merit. Fear no grub. To learn more, call 1-800-331-2867 or visit BayerProCentral.com.
Continued from page 57

expression. The disease then enters a decline phase which may last from one to three years. All newly constructed greens affected by dead spot had sand as the primary soil medium. Occasionally, dead spot was found on sand-based bentgrass collars and tees, indicating that *O. agrostis* can attack creeping bentgrass maintained at higher mowing heights. Dead spot, however, has not been found on fairways or other sites where bentgrass turf was grown on native soil.

**Biological aspects**

On golf courses in the mid-Atlantic region, dead spot symptoms may appear as early as May, but disease activity generally is most severe between July and August.

In a growth-chamber study, winter-dormant creeping bentgrass field samples showing symptoms of dead spot were incubated at temperatures ranging from 59 degrees Fahrenheit to 86 degrees Fahrenheit. After 12 days to 28 days of incubation, disease reactivation occurred at temperatures more than or equal to 68 degrees Fahrenheit, but dead-spot severity was greatest at temperatures between 77 degrees Fahrenheit and 86 degrees Fahrenheit. Similarly, in-vitro studies revealed that the optimum temperatures for mycelia growth of *Continued on page 62*

---

### TABLE 1

**Bentgrass dead-spot infection centers for 20 field-grown Agrostis spp. selections, College Park, Md., between 2000 and 2002.**

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Bentgrass species</th>
<th>2000</th>
<th></th>
<th>2001</th>
<th>Infection centers per plot</th>
<th>2002</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6 Sept</td>
<td>29 Nov</td>
<td>15 May</td>
<td></td>
<td>16 Aug</td>
<td>18 July</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABT-CRB-1</td>
<td>creeping</td>
<td>27a-d</td>
<td>11b-e</td>
<td>9bcd</td>
<td>3ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backspin</td>
<td>creeping</td>
<td>18cde</td>
<td>6gh</td>
<td>6cde</td>
<td>2bcd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAR AS BUS3</td>
<td>creeping</td>
<td>21b-e</td>
<td>7-h</td>
<td>7bcd</td>
<td>2bcd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAR CB 8FUS2</td>
<td>creeping</td>
<td>22b-e</td>
<td>10b-e</td>
<td>11ab</td>
<td>2bcd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bardot</td>
<td>colonial</td>
<td>32a-b</td>
<td>6-e-h</td>
<td>4ef</td>
<td>1cd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bavaria</td>
<td>velvet</td>
<td>8f</td>
<td>4h</td>
<td>2f</td>
<td>0d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century</td>
<td>creeping</td>
<td>27a-d</td>
<td>14b-c</td>
<td>11ab</td>
<td>3ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crenshaw</td>
<td>creeping</td>
<td>17def</td>
<td>5gh</td>
<td>6d</td>
<td>1bcd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperial</td>
<td>creeping</td>
<td>33ab</td>
<td>9-c-g</td>
<td>8bcd</td>
<td>1cd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-93</td>
<td>creeping</td>
<td>37a</td>
<td>11bcd</td>
<td>10abc</td>
<td>2abc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penn A-1</td>
<td>creeping</td>
<td>33ab</td>
<td>15bc</td>
<td>11ab</td>
<td>3ab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penn A-2</td>
<td>creeping</td>
<td>23c-e</td>
<td>8d-h</td>
<td>8bcd</td>
<td>2bcd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penn A-4</td>
<td>creeping</td>
<td>29a-d</td>
<td>15b</td>
<td>12ab</td>
<td>3abc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penn G-1</td>
<td>creeping</td>
<td>25a-e</td>
<td>10b-f</td>
<td>8bcd</td>
<td>2abc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penn G-6</td>
<td>creeping</td>
<td>29abc</td>
<td>8d-h</td>
<td>9bcd</td>
<td>1bcd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennncross</td>
<td>creeping</td>
<td>14ef</td>
<td>6-e-h</td>
<td>7bcd</td>
<td>1cd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennlinks</td>
<td>creeping</td>
<td>17def</td>
<td>7-d-h</td>
<td>5de</td>
<td>2bcd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Providence</td>
<td>creeping</td>
<td>24a-e</td>
<td>11b-e</td>
<td>11ab</td>
<td>3abc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR1119</td>
<td>creeping</td>
<td>22b-e</td>
<td>10b-f</td>
<td>11ab</td>
<td>2bcd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR7200</td>
<td>velvet</td>
<td>32a-b</td>
<td>24a</td>
<td>14a</td>
<td>5a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers that have the same letters next to them are statistically the same.

Data were transformed (y+0.5), but pre-transformed means are shown.

Bentgrass dead spot fully recovered in the autumn of 2001 and data from 2002 represent new infection centers.

Means in a column followed by the same letter are not significantly different (P < .05) based on the protected least significant difference multiple mean comparison test.