Get the Inside Scoop on the Industry
Every Two Weeks from the
Golfdom Insider.

Subscribe
Now at
Golfdom.com
Continued from page 70

teents from the nutrients. Otherwise, you
can't clearly identify the cause and effect."
Karnok concurs. "It leads some of us
to wonder if you could get the same results
by tweaking your nutritional program
instead of purchasing the extra materials."

Erik Ervin, a turfgrass professor who
followed in the footsteps of Dick
Schmidt, a biostimulant advocate at
Virginia Tech, says he would be happy
to supply Karnok with his research
studies. Ervin, who has replicated and
refined much of Schmidt's work, says
the evidence is clear that biostimulants
have a positive effect on turfgrass sys-
tems separately from the nutritional
components of the products.

"I came to the whole biostimulant
issue as a skeptic, so I did an experiment
where I burned off all the organic
materials so only the nutrients remained," Ervin says. "When we applied them to
the test pots, we saw no effects at all."

Ervin adds that the amount of macro-
nutrients supplied when using these prod-
ucts at label rates would often not be ade-
quate for even spoon-feeding purposes.
Biostimulants should be used to supple-
ment a good fertility program — not re-
place one. "The levels of nutrients in the
seaplant or humic acid extracts used in our
studies aren't high enough to produce the
benefits we see by themselves."

Bill Byrnes, president of Floratine
Products, empathizes with academic
researchers' objectives.

"But delivering product value
demands recognition of the many nu-
tritional and 'non-nutritional' elemen-
tal interrelationships in plant growth
processes and addressing them with syn-
ergistic components," Byrnes says. "They
are interconnected."

While Karnok concedes that Byrnes
may be right, he says he'd still like to test
the active ingredients separately. "It
would remove some of the doubts that
still remain for superintendents."

The debate over research

One of the thorniest questions in the
biostimulant debate is what constitutes
appropriate research. When explaining
the benefits of their products, companies
often cite internal testing by their re-
search-and-development departments as
well as university research they've funded.

Byrnes says Floratine has supported
and cooperated with more than 15 uni-
versities in many trials and continues to
do so. "Even so, all our product devel-
opment research is on real-life turf stress
conditions because helping superinten-
dents is what matters," he adds.

Weltzein says Novozymes/Roots has
done more than 100 studies at 16
universities.

Geoff Simril, sales manager for
Milliken Turf, scoffs when critics say there
 hasn't been enough research. He says there's
plenty of basic and applied research that
shows that the use of seaplant extract,
humic acids and amino acids can help keep
turf healthy under stressful conditions, and
that similar products have been used in
agriculture for years with success. "The
body of scientific evidence is actually pretty
overwhelming, so I don't understand that
line of argument," he adds.

Weltzein says he believes the current
research proves biostimulants work, but
he wishes it would explore the relation-
ship between biostimulants and traditio-
nal nutrition programs. "We believe
biostimulants allow superintendents to
reduce nutritional inputs significantly,
but we've had a hard time finding a
researcher willing to push it that far," Weltzein says.

But critics, and even some support-
ers, acknowledge that at least some of
the research might not hold up in the
field. Christina Wells, a professor at
Clemson University, says she doesn't
doubt the research that proves
biostimulants provide benefits to
turfgrass under controlled greenhouse
conditions. But she wonders about
whether the research adequately mirrors
what actually happens on golf courses.

"There's been some controlled sci-
ence that shows promise," Wells says.
"That doesn't make the research any less
valid in its conclusions, but it's not real-
world conditions."

Even Ervin, who says his greenhouse
research proves that biostimulants work,
says he'd like to duplicate his results in
the field but has had trouble doing it.

"Right now, it's a fairly accurate rep-
resentation to say that most published
biostimulant research has been done
under controlled environment circum-
stances," Ervin says. "We've been able to
see some successes in field trials — small
increases in root mass under moderate
stress conditions — but nothing I'd want
to stake my professional reputation on."

Karnok says the available research
shows some biostimulants work with
certain varieties under certain conditions,
but that doesn't mean they would work
for all varieties under all conditions.

"With so many different varieties of turf,
it's hard to see how biostimulants could
be treated as a one-size-fits-all solution
to any problem," he says.

Wells says more research needs to be
funded so products can be tested under
actual golf course conditions, but she says
the money for such research is scarce. "As
researchers, we're always constrained by the
priorities of the funding agencies," she adds.

Continued on page 74
POWERFUL²

Dual systemic fungicide works as a curative and a preventative.

RELENTLESS²

Starts working immediately and lasts up to 30 or more days.

CONTROL²

Controls over 30 fungi including dollar spot.

SysStar fungicide works twice as hard, on more sites, with more modes of action than any other fungicide on the market. Dual Systemic action is the key. This powerful systemic action works from inside the plant to protect it from root tips to plant tops. Don’t waste another season with a single action fungicide. Get the powerful dual systemic action of SysStar – and get it on the double... ().

The dual systemic fungicide for turf, landscape and ornamentals. 1-800-621-5208.
Superintendents could push for more funding from the USGA and other funding organizations. "If superintendents demand research, then the money will follow," she says.

Gary Grigg, former superintendent and vice president/agronomist of Grigg Bros., a foliar fertilizer and biostimulant manufacturer, says the industry segment won't boom until suppliers provide more independent university research.

"The bottom line is that the people superintendents listen to — the university professors — are still skeptical about the products in many ways," Grigg says. "Companies need to involve them more aggressively if they want to succeed."

Grigg is quick to add that he's not saying university researchers have a monopoly on good research. "There are a lot of former academics in the research-and-development departments at these companies that do good work," he says. "But superintendents are more likely to trust research done by outsiders."

The ideal use

Floratine's Byrnes says anyone labeling any product as a cure-all is both unethical and economically unsound.

"Well-designed biostimulants are simply tools which can supplement turf's resources to handle stress," Byrnes says. "There are no silver bullets."

The manufacturers say biostimulants should be used as part of a regular maintenance program to build up the plant's tolerance for stress.

Milliken's Simril says today's greens are always under stress because of lower mowing heights, so superintendents shouldn't wait until a drought or other environmental factors force them to go to biostimulants.

"The question of when stress begins for turf has changed significantly over the years," Simril says. "Low-mowing itself stresses the turf by eliminating photosynthetic areas. You can't decide at the last minute to use these products because they don't give you instant results."

Biostimulants make the plant tougher by stimulating antioxidant production. They also may stimulate root growth, increase photosynthetic rate and capacity, and increase stress tolerance and disease resistance, Simril says.

But not everyone believes superintendents should use biostimulants so broadly. Instead, Wells suggests that biostimulants may be more like prescription medications.

"Under specific stress conditions, biostimulant use may be beneficial," Wells says. "But without further research under real-world conditions, we don't have enough information to write specific prescriptions."

Which brings the debate back to Karnok. He says that in an era when superintendents are looking for every angle to give them an edge, biostimulants are a nice safety net.

"I wouldn't rely on them to take care of all your problems, but they're not hurting anything," Karnok says. "As long as you're not skimping on other items like fertilizer and pest control materials and you can afford them, I'd cautiously consider them."

Ultimately, each superintendent will have to evaluate how useful biostimulants are in their individual situations.

"Superintendents will have to try them to see if they work for them," Grigg says. "That's the best kind of testing there is."
Poa annua invades bentgrass fairways and greens often out-competing bentgrass and other desirable grasses, eventually becoming the dominant turf species. Cutless turf growth regulator can help you fight this encroachment, and shift the competitive advantage back to your desirable turfgrass. Unlike some plant growth regulators, Cutless constricts the Poa annua but is gentle on desirable grasses such as bentgrass, allowing the bentgrass to grow and establish in the constricted Poa annua colonies. So free your bentgrass and squeeze the Poa annua out of your fairways and greens. Use Cutless, the Poa Constrictor!

For more information about Cutless turf growth regulator, call 1-800-419-7779 or visit our web site at www.sepro.com.

"Here at Merion Golf Club, our members are passionate about golf and the condition of our course, so we have an active Poa annua management program. We rely on Cutless because it is highly effective in reducing Poa annua infestations in bentgrass fairways. My experience with Cutless is that it is less disruptive on the bentgrass, while being highly effective in reducing Poa annua populations. In addition to bentgrass conversion, Cutless also provides labor savings by reducing our mowing requirement. Cutless is a great product that I am glad to see SePRO bring back to the golf course market."

Matt Shaffer
Director of Golf Course Operations, Merion Golf Club, Ardmore, PA

SePRO Corporation 11550 North Meridian Street, Suite 600, Carmel, IN 46032

*Trademark of SePRO Corporation. Always read and follow label directions. ©2004 SePRO Corporation.
The Dog Days of Summer (Patch)

Reducing turfgrass stress and promoting healthy root development are keys to controlling difficult disease

BY MIKE BOEHM AND JOE RIMELSPACH

Turfgrass patch diseases such as summer patch, take-all patch and spring dead spot are difficult to diagnose and manage. They are caused by a group of fungi known collectively as the ectotrophic root-infecting (ERI) fungi. The ERI fungi produce darkly pigmented runner hyphae along the surface of, and ultimately inside, the vascular tissue of roots. They typically colonize roots, crowns and stolons during periods favorable for turfgrass growth and result in compromised root function during periods of stress.

The characteristic patch or ring spot symptoms associated with these diseases are typically not observed until the turfgrass is stressed by a change in environmental conditions or as a result of cultural management practices. Before 1984, the only confirmed turfgrass disease of this type in North America was take-all patch (formerly known as Ophiobolus blight or patch) caused by Gaeumannomyces graminis var. avenae. Today, at least six different patch diseases of turfgrass are recognized and include: necrotic ring spot (caused by Lepotosphaeria korrae and recently renamed Ophiopsaerella korrae); summer patch (caused by Magnaporthe poae); spring dead spot of bermudagrass (caused by LepRTOSphaeria narvae); bermudagrass decline (caused by Gaetumannomyces graminis var. graminis); bentgrass dead spot (caused by Ophiopsaerella agrostis); and take-all patch.

Summer patch is most often associated with Kentucky bluegrass, annual bluegrass and various turf-type fine fescues. It has also been reported as a problem on other Poa and Festuca species and most recently on creeping bentgrass. The disease was first described in 1984, and the summer patch pathogen M. poae was identified in 1987. Symptoms of summer patch are most prevalent and severe during hot (65 degrees Fahrenheit to 85 degrees F), humid or wet weather on stressed turfgrass grown in poorly drained soils. Frequent irrigation also increases disease pressure. Soil pH does not appear to influence summer patch the way it does take-all patch.

Colonization of the host begins when soil temperatures reach 65 F to 70 F but symptoms don’t generally appear until later in the season when temperatures peak (85 F to 95 F). Optimal temperature for growth of M. poae in the laboratory is reported as 82 F to 87 F.

Summer patch can be confused with other diseases caused by ERI fungi. Although not entirely valid from a scientific standpoint, many field diagnoses of turfgrass patch diseases are based on the type of grass affected (take-all patch if on creeping bentgrass; summer patch if on Poa annua putting greens). Although somewhat useful for field diagnoses, the only sure way to know which disease one is dealing with is to have it analyzed by a turfgrass disease specialist or clinician.

On high-cut turfgrass, such as in roughs and clubhouse surrounds, the disease appears as irregular patches, rings and crescents. It appears similar to necrotic ring spot, even to a trained eye. Patches are typically about 1 foot in diameter but often coalesce.

On low-cut turfgrass, such as putting greens, the patches and rings are better defined. Yellowing and decline is often restricted to the P. annua in mixed bentgrass. P. annua swards. The roots, crowns and stolons of heavily infected turfgrass is often severely darkened because of the presence of a large amount of ectotrophic runner hyphae — a key diagnostic sign of this disease and other diseases caused by ERI fungi.

The pathogen M. poae is believed to survive unfavorable periods as dormant mycelium in thatch and in infected roots. During cool, moist weather, typical of April and May in the Midwest, the pathogen breaks dormancy and penetrates roots, crowns and stolons. As mentioned previously, primary infections occur when daily average soil temperatures reach between 65 F and 70 F. During this time, the pathogen quietly colonizes and compromises the integrity of turfgrass roots and crowns.

During seasons dominated by ideal turfgrass growing weather, symptoms may not be evident. However, under periods of increased stress, such as those brought about by heavy play, agronomic maintenance practices or the heat of the summer, plants with compromised root systems simply cannot maintain themselves and die.

The first line of defense to prevent or minimize summer patch is through the selection and/or use of disease-resistant turfgrass species/cultivars. Unfortunately, the use of genetically resistant turfgrass is limited to newly established or renovated turfgrass areas or in situations where overseeding is used. Many of the new Kentucky bluegrass varieties offer resistance to summer patch. Information regarding

Continued on page 78
The Intelligent Use of Water™

Water. It's what keeps the world alive. As the world's largest manufacturer of irrigation products, we believe it is our responsibility to develop technologies that use water efficiently. Over the past seven decades, our pioneering efforts have resulted in more than 130 patents. From central control systems and automatic shut-off devices to pressure regulating components and low volume drip irrigation, Rain Bird designs products that use water wisely. And our commitment extends beyond products to education, training and services for our industry and our communities.

The need to conserve water has never been greater. We want to do even more, and with your help, we can. Visit www.rainbird.com for more information about The Intelligent Use of Water.
Dog Days of Summer Patch

Continued from page 76

disease resistance can be obtained by contacting seed distributors, extension specialists and through the National Turfgrass Evaluation Program (www.ntep.org).

For most, practical management of summer patch begins with the use of cultural practices designed to reduce stress and optimize turfgrass growth. Management practices that promote adequate drainage, reduce soil compaction and promote healthy root growth along with a balanced fertility program are key to avoiding summer patch. The use of quick-release nitrogen (N) fertilizers and frequent, light irrigation cycles should give way to the use of slow-release N fertilizers and deep, penetrating irrigation. Although often recommended but difficult to implement, avoid mowing turfgrass below recommended heights.

In general, do anything and everything possible to reduce stress and promote healthy growing grass. In addition, timely preventive fungicide applications are typically warranted to manage summer patch.

Fungicides labeled for use against summer patch include the strobilurins, the sterol inhibitors, thiophanate-methyl, iprodione and fluidoxonil. Thiophanate-methyl also works well as a curative fungicide.

Although turfgrass pathologists may vary somewhat in their recommendations for when to begin fungicide applications, most agree that they should be made when soil temperatures (at 2 inches to 3 inches) reach 65 F. When making fungicide applications, it is critical to know the location (roots, crown, shoots and stolons) of the targeted pathogen and apply accordingly. No biological control products are available for managing summer patch. •

Boehm is an associate professor and turfgrass pathologist at The Ohio State University. Rimelspach is an extension turfgrass pathologist at OSU.

Manni-Plex Ca:

The Clear Choice

The unique sugar/alcohol formulation of the Manni-Plex micro-nutrient delivery system provides unparalleled foliar mobility. Percentages in a jug only tell half the story, find out the other half. Call or write for information on the Manni-Plex™ family of products.

13802 Chrisman Road
Houston, Texas 77039
800.442.9821
Our Greatest Hits Collection

Frank.

GREEN INDUSTRY FEVER

Golfdom Rocks!
Evapotranspiration Offers Superintendents More Irrigation Control

BY ALAN CLARK

For more than 25 years, state-of-the-art central irrigation control systems have been computerized and have simplified how superintendents set run times for sprinklers. Whether the central system is programming a field satellite, paging a superintendent or activating a decoder, it still tells that sprinkler station to run for a certain amount of time.

Today, we have the capability of setting specific run times for individual sprinkler heads depending on how we choose to water: deep watering, frequent/short run times, or repetitive cycles and repeats. But despite using these precise computers, superintendents must still answer the vital question: How should we determine how long those run times should be?

Superintendents have two options to set run times for today’s irrigation central-control systems. One method is to set specific run times in minutes and budget for each of those times from one day to the next, depending on weather conditions. The other and more scientific option is to let a weather station calculate evapotranspiration (ET) rate and let the central-control system set the run time itself. To understand how using ET values to set your run times can help your irrigation system run more efficiently, it’s important first to understand exactly what ET stands for and why it’s important.

ET rates are calculated by combining two separate plant processes — evaporation and transpiration. Evaporation is how water moves from the soil through the plant to the air. When the water loss of the two processes are combined (an ET rate), superintendents have a calculation that will tell them the precise amount of water needed to replace what the turf lost because of ET that day.

Many on-site weather stations can calculate ET rates automatically after collecting data from five sensors over a 24-hour period. The sensors measure the minimum and maximum temperatures; relative humidity; wind speed; sunlight; and rainfall amounts. The weather station averages the data and calculates an ET value based on a modified Penman equation. That rate is transmitted to the central-control system, which uses it, combined with the precipitation rates of the sprinklers to calculate the run time for each station, to set proper run times.

So why is using the ET method a better way to set run times than more traditional, time-based systems? ET maximizes water-distribution efficiency because of its precision. Superintendents avoid over- or underwatering certain areas of the golf course because they are replacing exactly the amount of water the plant lost during the day, meaning the plant can use the irrigation water immediately. That limits runoff and water waste.

It’s difficult for superintendents to notice the difference between a day with .16 ET and a day of .15 on their own, but an ET-enhanced control system can save thousands of gallons of water because it does recognize the difference. This can reduce water costs and result in electrical savings because the pump station does not have to run as long.

Since golf courses are often made up of multiple microclimates, however, superintendents are often skeptical of how calculating ET rates off of one weather station can possibly control the irrigation system for the whole course. One option is to position multiple weather stations throughout the golf course, which allows for accurate determination of proper ET values for the different microclimates so the central-control system can calculate precise run times for the area.

Another option is to assign a different percentage value for each sprinkler station in the central control. This percentage would adjust the run time of