Sometimes the best way to measure a fungicide is by what it doesn't do. Compass doesn't come with a heavy price tag like the leading strobilurin. In fact, it's only half as much per application. It doesn't promote turf thinning. It doesn't flare dollar spot. On the other hand, Compass does provide preventive and curative broad-spectrum control of more than ten tough diseases, including brown patch, summer patch, gray leaf spot and anthracnose. See what it can do for you. And see what it won't do. Call 1-800-331-2867 to learn more.
Progress, whether cultural or industrial, is driven by advances in technology as customers demand innovation to solve evolving problems. Golf course aeration has undergone many changes over the past 100 years as superintendents strive to relieve compaction and provide their turf with oxygen, the most crucial element for turf survival. Mechanical means of introducing oxygen have become quite advanced, but the next generation of aeration technology will focus on water quality and how it affects soil oxygen levels.

New technologies are now available that greatly increase the dissolved oxygen level of irrigation water for preventative treatment of anaerobic root zones.

Review of turfgrass respiration

Under normal environmental conditions, turf respiration enables the root to absorb soil oxygen, water and nutrients and transport them to above ground plant tissue. Plant roots absorb oxygen from soil macropores and oxygen dissolved in soil moisture, using it like animals do in breathing. Oxygen has two means of introduction to the soil — mechanical aerification and irrigation. Changes in the soil atmosphere are most frequently brought about by flushing soil pore spaces with water. In addition, water will have more oxygen and less carbon dioxide dissolved in it. Thus, it will be better suited to promote plant growth (Roberts, 1990).

Superintendents haven’t focused on enhancing the oxygen content of water because the technology was lacking. Frequent irrigation and poor drainage of the root zone often result in a lowering of available soil oxygen as both macropore and micropore spaces are filled with water containing small amounts of dissolved oxygen. High temperatures and higher humidity increase the respiration rate of the plant, demanding more oxygen because of increased oxygen depletion.

Once the dissolved oxygen is depleted, the plant’s health declines until the excess water drains from the macropores or more dissolved oxygen is supplied. Since oxygen diffusion through water is approximately 10,000 times more limited than through air (Berndt, Vargas, Melvin, 1989), irrigation water must contain as much dissolved oxygen as possible before it reaches roots and seals them in a membrane of moisture. Even complete knowledge of soil-air dioxide (O₂ concentrations doesn’t allow an assessment about whether a soil is adequately aerated. In soil, the rates of gaseous diffusion are restricted by the water surrounding the organisms (Simojoki, 2001).

An understanding of the diffusion rate and how water can act as a barrier to soil oxygen is why dissolved oxygen can no longer be overlooked when discussing sufficient aeration.

Mechanical aerification soon led to core extraction and the creation of vent holes using solid tines. Unfortunately, it’s typical for less than 10 percent of the soil volume to be exposed to atmospheric oxygen after these treatments. This is one of the main benefits of using water’s natural ability to transport dissolved oxygen. When discounting hydrophobic regions, water will deliver oxygen to 100 percent of the green’s soil volume.

In the 1960s and 1970s the USGA Green Section stimulated interest in root-zone soil mixtures that were more resistant to compaction than most soils, yielding good internal water and gas infiltration and retention. The industry responded with deeper-reaching tines, followed by water injection cultivation (WIC) which helps relieve compaction and increase infiltration rates. Summer treatment with WIC and solid-tine cultivation (STC) significantly increased infiltration rates of water and reduced soil salinity for in-use practice putting greens (Green, Wu, and Klein, 2001).

Sections of soil that are not wettable can also become oxygen deficient. If water is not able to adequately penetrate the depths of a 2-inch to 8-inch root zone, it does not take much to realize that soil gases are trapped as well and oxygen deficiencies are emerging.

Surfactants can have a big impact on treating hydrophobic areas and returning moisture to sections of the green that are struggling. They also transport oxygen dissolved in water to the turf root.
zone, promoting root growth and enhancing soil system biodegradability — which helps improve water use (Roberts, 2002). Therefore, wetting agents not only bring water to sections of the soil previously impenetrable to water, but that water brings a fresh supply of dissolved oxygen.

As far back as the early 1900s, attempts were made to aerate or loosen the soil to establish a favorable balance of soil oxygen in greens. Initial practices involved spade-fork cultivation, and the 1940s even spawned brief uses of dynamite.

Lack of dissolved oxygen

Existing aeration practices have focused on modifying the soil profile to introduce more oxygen and re-establish a larger number of macropores. Microdiffusion Inc.’s focus is on modifying the oxygen capacity of the soil water or moisture, not the macropore and micropore spaces.

Superintendents strive to get more dissolved oxygen in their lakes to promote healthy aerobic activity, but may overlook the repercussions of water that is low in dissolved oxygen being sprayed on their greens.

Irrigation lakes often become stratified during hot summer months. A stationary irrigation intake valve located near the bottom of the lake can result in water with the poorest quality and lowest dissolved oxygen levels being applied to the turf. Remedial maintenance will be required to maintain adequate turf quality and overcome the negative use of such water.

In addition, the greens also are stressed by partially decomposed organic matter that competes with the turf for oxygen at the soil surface. On many greens, the stress is so great that the turf can’t survive. (Smart, 1999).

Recent research emphasizes other problems associated with oxygen deficiencies. Plant roots need oxygen as the terminal electron acceptor of the respiratory chain to gain energy for adenosine triphosphate synthesis if oxygen is not readily available (Simojoki, 2001).

A biologically mediated process called denitrification will use nitrate or other oxidized forms of nitrogen as the terminal electron acceptors for respiration instead of oxygen. This can happen in a root zone that isn’t commonly considered anaerobic. In fact, when turf is watered through irrigation or from rainfall, small sites within the soil profile can become oxygen limiting (Horgan, 2003). As soil temperatures rise, nitrogen losses will increase as the turf’s elevated respiration triggers more denitrification and a decreased efficiency in fertilizer use.

Horgan’s study proved that fertilizer losses can be significant even after light irrigation because not enough oxygen is available. Based on this data, the next step for denitrification research should focus on loss of nitrogen after irrigating as a function of the water’s amount of dissolved oxygen.

Dissolved oxygen treatment

Microdiffusion core technology takes advantage of water’s ability to hold and transport dissolved oxygen, as well as its ability to penetrate root zone.

Paramount to the technology is the increase in dissolved oxygen as water passes through the hand-water aerator. The initial level of dissolved oxygen, however low, does not limit the performance as the pump-like system will re-oxygenate the water to normal levels and beyond. The hand-water aerator can raise the oxygen content of water to over 30 parts per million (ppm) and it does not bubble away (see Figure 1).

This equates to over 500 percent more dissolved oxygen. Continued on page 54
Continued from page 53

solved oxygen during the summer when typical irrigation water is at or below 6 ppm.

What will ultimately standardize this new realm of root zone aeration is twofold:

- how many ppm of oxygen are being dissolved in the water; and
- how slowly does the dissolved oxygen dissipate.

The higher the sustained level of dissolved oxygen, the longer the soil water can contribute to biological respiration. "Previously, academics have only been able to attain dissolved oxygen levels approaching 11 ppm with existing technologies. In a worst case scenario Microdiffusion's equipment still produces water in the 25 ppm range," says Milton Engelke of Texas A&M. "What I find even more intriguing is the oxygen release curve, which proves that the oxygen is truly dissolved at those elevated levels and remains available for use by the soil system for hours after application."

Continuing research

Engelke's research verifies that the hand-water aerator can consistently achieve dissolved oxygen levels in the 25 ppm to 35 ppm range. His research on bentgrass and bermuda core samples confirms that the dissolved oxygen is being used within the root zone. During the experiments, an interesting discovery was also made. Along with the highly oxygenated water, tests were run with normal city water and oxygen-deficient water for comparison.

Leachate was collected for each sample after the application of water and not only was the extra dissolved oxygen being released in the root zone, the deficient water was removing oxygen from the root zone. This is worth noting for superintendents who have low dissolved oxygen levels, as the water shows a higher affinity for the soil oxygen than the soil does, removing oxygen as it leaches through the profile.

We are currently involved in hydroponic research to monitor increased nutrient uptake rates, overall plant health and plant respiration for regular water vs. oxygenated water. Research has proven that for many turf-like plant species the best growing conditions cannot be achieved with standard levels of dissolved oxygen.

Continued on page 56

CORRECTION

Editor's Note: Due to an editing error, the article appearing on pg. 56 of TurfGrass Trends in May contained a misleading headline and was missing two charts. The headline should have read, "Can Biostimulants Improve Bentgrass Root Growth?" The missing charts are reproduced below.

For the complete story with the correct headline and all four charts, please go to http://www.turfgrasstrends.com/turfgrasstrends/article/articleDetail.jsp?id=54396.

FIGURE 1

Mean root length density (cm/cm3) in monthly soil cores taken over the course of the OPGS experiment. Data from all fertilization levels and OPGS treatments are combined. Bars represent 1 SE.

FIGURE 2

Mean root length density (cm/cm3) in monthly soil cores taken over the course of the OPGS experiment. Data from all fertilization levels and OPGS treatments are combined. Bars represent 1 SE.
In an annual head-to-head contest for Green Industry publications, the Advanstar Landscape Group once again reaped more Turf & Ornamental Communicators Association writing, design and photography awards than any other publisher. Congratulations to our entire content team.

Best Use of Photography - Printed Magazines

First Place
Carrie Parkhill, Landscape Management, “Lawn Care in Nowhere”

Merit
Lisa Lehman/Kim Traum, Advanstar Communications, “Golfdom”

Writing for electronic web site newsletters/magazines (external and commercial)

First Place
Pat Jones, Golfdom, “To Move or Not to Move”

Merit
Kim Traum and Dan Beedy, Advanstar Communications, “The Golfdom Report”

Electronic Publishing - Overall Newsletter/Magazine Design, (internal and non-commercial)

First Place
Derek Miller, BASF, “Growing Trends” (and Lynne Brakeman, Advanstar, Jennifer Kempes, The Dudnyk Agency)

Electronic Publishing - Overall Newsletter/Magazine Design, (external and commercial)

First Place
Lynne Brakeman, Advanstar, “Landscape Management.net”

TIE: Lynne Brakeman, Advanstar, “Golfdom.com”

Merit
Lynne Brakeman, Advanstar, “Landscape Management Week in Review”
Continued from page 54

Under conditions of marginal oxygen supply, the plant may not appear to be suffering, but the effect on water and mineral uptake and transport from inadequate oxygen in the root zone, can lead to an increase in physiological disorders (Morgan, 2000).

In cultures of 0, 4, 8 and 16 ppm, the healthiest specimens were grown with the highest concentration of dissolved oxygen (Gilbert and Shive, 1941). Until now, levels of 16 ppm or higher were not feasible outside of a lab setting. Continued research in this area will draw new conclusions about how highly oxygenated water can help alleviate turfgrass stress as well as have an impact on fertilizer, fungicide and pesticide use.

Archembeau has a bachelor of science in chemical engineering and is currently the business development manager for Microdiffusion located in Southlake, Texas.

Author’s note:
Preliminary university research on our highly oxygenated water was conducted last year by Texas A&M and is available upon request or at www.microdiffusion.com. Case studies with current customers as well as cooperative research with other superintendents is underway and we are looking forward to reporting those field results within the next 6 to 12 months.

REFERENCES

EVER PLAYED IN A PGA TOUR EVENT?

THIS COULD BE YOUR YEAR.

Play The Fantasy Golf Contest Exclusively For Superintendents And Their Crews!
It's free. It's fun. It's The Major Challenge, the fantasy golf contest where you're the coach and the world's best golfers are on your team! As your team competes in the Masters, the U.S. Open, the British Open, and the PGA Championship, you have a chance to win great prizes, from travel golf bags to an all-expense paid trip to play in the Monday Pro-Am at the John Deere Classic in September!

The Major Challenge is sponsored by the John Deere Golf & Turf Division and is being offered to Superintendents and their crews. Go to The Major Challenge website and register your team today!

www.majorchallenge.com/golf

JOHN DEERE
Golfdom
The Keepers of Hallowed Turf

BY LARRY AYLWARD, EDITOR

T he quick-thinking and fast-talk- ing Rick Christian Jr. pauses when asked if he considers himself the luckiest person in the golf course maintenance world. After all, Christian holds the eminent title of superintendent at Pine Valley GC, arguably the greatest golf course in the nation and one of the top tracks in the world.

"To be honest with you," Christian says humbly, while pondering the sentimentally fueled question, "I feel blessed to be where I am."

Who wouldn't? The George Crump-Harry Colt designed course in northern New Jersey is considered hallowed ground in golf circles. If there's a Yankee Stadium of golf courses, Pine Valley is it.

Christian has been at Pine Valley for 20 years and has been its superintendent for the past 16 years. But even after two decades of working there, the 38-year-old doesn't take any part of his job for granted. He realizes that some superintendents would give up a chummy relationship with a green committee chairman or a fleet of new walking greens mowers to be in his shoes.

That's not to say that Christian doesn't have his share of hectic days at Pine Valley. It's just that he gets to have them at Pine Valley.

Often, when the heat is getting to Christian — literally and figuratively — he'll take a break to reflect on where he is and what he does. "I'll take a step back, look around me for about 10 seconds and say to myself, 'This is awesome,'" he says.

Christian is not alone in his sentiments for the celebrated turf he oversees. Many superintendents of classical courses pay homage to
The golf course gods for the opportunities they’ve been provided. They realize they’re tending turf at historic and extraordinary tracks designed by the likes of MacKenzie, Ross, Raynor and Tillinghast. They know that they’re part of history.

But make no mistake: The glory that comes with being a superintendent at a highly ranked classical course does not come without distinct agronomic challenges, as well as demanding green committees and members. Indeed, there is stress at the top. In fact, most superintendents of these legendary courses confront bottom-of-the-ninth-type pressure almost every day.

Despite the pressure, they’re passionate about what they do because of where they do it.

"Who could ask for more?" says Michael Morris, talking about his job as certified superintendent of Crystal Downs CC in Frankfort, Mich., a famed classical course designed by Alister Mackenzie and Perry Maxwell in 1931. "This is a beautiful piece of land in a spectacular setting, with a golf course created by two of the greatest architects in the history of golf. It’s a great privilege to be the superintendent here."

Living on the edge
Matt Shaffer, director of golf course operations at Merion GC in Ardmore, Pa., ducks inside an air-conditioned room to escape the intense pressure.

"Who could ask for more?" says Michael Morris, talking about his job as certified superintendent of Crystal Downs CC in Frankfort, Mich., a famed classical course designed by Alister Mackenzie and Perry Maxwell in 1931. "This is a beautiful piece of land in a spectacular setting, with a golf course created by two of the greatest architects in the history of golf. It’s a great privilege to be the superintendent here."

Living on the edge
Matt Shaffer, director of golf course operations at Merion GC in Ardmore, Pa., ducks inside an air-conditioned room to escape the intense pressure.

"Who could ask for more?" says Michael Morris, talking about his job as certified superintendent of Crystal Downs CC in Frankfort, Mich., a famed classical course designed by Alister Mackenzie and Perry Maxwell in 1931. "This is a beautiful piece of land in a spectacular setting, with a golf course created by two of the greatest architects in the history of golf. It’s a great privilege to be the superintendent here."
Continued from page 59

heat on this sizzling summer afternoon. The tall and tanned Shaffer kicks back in a chair and talks about his first five months on the job at Merion. His rugged face beams when he talks about the course, designed by Hugh Wilson in 1912.

“This is a dream job for me,” Shaffer says. “It’s everything I’ve worked for.”

Shaffer doesn’t mind the pressure that comes with managing such distinguished turf. In fact, he welcomes the scrutiny placed on him to have the course in a constant state of excellence.

Shaffer recalls his first taste of working for a classical course. He worked as an assistant to Paul R. Latshaw at Augusta National in the mid-1980s, and he saw firsthand the pressures a head superintendent endures when he’s at one of the top classical courses in America.

“I was Latshaw’s right-hand man, and I saw the stress he went through,” Shaffer says. “I said to myself, ‘Man, I wonder if it’s worth it.’”

Shaffer doesn’t wonder that now. He’s learned that working at one of the top courses in the country, despite the stress the job may bring, is worth a few gray hairs. More than that, Shaffer has learned to thrive on the pressure.

That pressure is directly related to course conditioning and agronomics, which often equates to golf in the fast lane. Members at Merion and other classical courses like the fairways firm and the greens fast, and Shaffer is responsible to deliver such conditions. He describes Merion’s playability as “raw, unadulterated golf” for six months of the year. It’s fast and furious, and hell on the turf.

“We cut, roll and hand-water the greens every day,” Shaffer says. “We mow the fairways every day.”

It’s living on the edge for a superintendent, Shaffer says. And when you’re adhering to such high standards of play and testing the wrath of Mother Nature, you can’t doze, Shaffer warns. If you do, you could be staring down at a dead green in two days.

“I have my heels on the edge of the cliff,” Shaffer says only half-joking.

Certified superintendent Mark Kuhns