When you buy a piece of turf equipment from your Jacobsen distributor, he knows that the sale doesn’t end with delivery.

In fact, it’s just beginning. The rest of it depends upon his ability to give you fast service whenever it’s needed. He knows that when your equipment is out for service, it’s like having no equipment at all.

That’s why your Jacobsen distributor goes out of his way to offer you the best service in the business. From normal maintenance to emergency repairs.

And he’s been going out of his way for a long time. Our distributors have been with us for an average of 25 years. And their service managers have been with them for an average of 11 years. That’s one heck of a lot of experience.

But Jacobsen distributors don’t rest on laurels. Every year they send their service managers and key people to our Racine Product Training Center for comprehensive training sessions.

To stay up-to-date on new products and modifications. To attend workshops on subjects such as the latest advances in hydraulics and transmissions. And to attend seminars on parts, service and management training.

Not only that, Jacobsen distributors hold field seminars and offer training to those customers who handle their own routine maintenance.

Fast service. Done by professionals who are thoroughly trained.

That’s what you said you expect.
And that’s why we feel that the sale is really completed in the service department.
Next time you get a chance, ask your Jacobsen distributor to tell you about his service philosophy.
The more you listen to what he has to say, the more you’ll know he’s been listening to you.

We hear you.

Jacobsen Division of Textron Inc.
Circle 105 on free information card
Relative effectiveness of fungicides and nematicides in fusarium blight control

By Houston B. Couch, James M. Garber, and Joseph A. Fox

Fusarium blight is an important and widespread disease of temperate zone turfgrasses(4). Its clinical syndrome consists of two phases: (1) leaf blighting and crown rot, and (2) root rot. The leaf blighting and crown rot phase is first seen as light green patches of turf 2 to 6 inches in diameter. These areas change to a dull reddish brown, then to tan, and finally to a light straw color. The shapes of these areas may be elongated streaks, crescents, or circular patches.

In the later stages of disease development, these circular areas may enlarge to 1 to 3 feet in diameter with center tufts of green, apparently unaffected grass. This combination produces a distinct “frog-eye” effect. Quite commonly, the “frog-eye” pattern may be either absent or in low incidence. In these cases, the overall symptom pattern will be either general blighting or crescents and streaks that are either isolated or impinging on each other.(3,6)

When the root rot phase of Fusarium blight predominates, the plants become stunted, turn pale green in color, and do not recover readily from mowing or adverse weather conditions. The roots of these plants are characterized by a brown to reddish-brown dry rot. As the disease progresses, these roots become darker in color due to colonization by soil saprophytes.(4)

In established stands of turfgrasses, the main sources of inoculum for new infections are dormant fungus tissue in plants that were colonized the previous growing season and Fusarium that is actively growing in the thatch. Certain isolates of the fungi that incite Fusarium blight have been shown to vary in their air temperature requirements for maximum pathogenicity. As a general rule, however, the foliar phase of the disease is more severe during extended periods of high atmospheric humidity with daytime air temperatures from 80° to 95°F, and night air temperatures of 70°F or above.(3)

Turfgrass grown under deficient calcium nutrition is more susceptible to Fusarium blight. Also, the disease is more severe under conditions of high nitrogen fertilization (3,5) and when the plants are under soil moisture stress.(5)

Incited by two species of fungi
Fusarium blight is incited by two species of fungi — Fusarium roseum (3) and Fusarium tricinctum. Both species are known to be transmitted on turfgrass seed.(2,3). Also, they are capable of surviving as saprophytes in the thatch and soil.

In addition to differing in their air temperature requirements for maximum pathogenicity, individual isolates of Fusarium roseum are also known to vary in their basic pathogenic potential. This variability ranges all the way from being capable of growing only as obligate saprophytes to functioning as highly pathogenic, primary parasites. Also, the overall symptom patterns within the group of turfgrass diseases that are characterized by either foliage blighting or crown rot commonly overlap. For example, in stands of turfgrass under tee or fairway cutting heights, the symptom pattern for Rhizoctonia brown patch and Pythium blight often duplicate those described above for Fusarium blight.

Positive diagnosis of Fusarium blight, then, requires more than observing the association of this particular species with what would appear to be the appropriate symptom pattern of the disease. It also requires that Fusarium roseum be isolated from the diseased tissue, grown in pure culture, and then shown to be pathogenic to the turfgrass variety in question. If this procedure is not followed, then the condition in question can not be unequivocally diagnosed as Fusarium blight.(3)

Are nematodes the primary cause of Fusarium blight?
In the initial report on Fusarium blight, it was noted that a positive correlation was not found between the occurrence of the disease and the presence of parasitic nematodes(3). In 1972, however, the possibility was raised that nematodes might be the major causal factor in the development of Fusarium blight. The initiation of this theory was based on two reports. Laughlin and Vargas(7) found that nematody, a systemic fungicide known to control Fusarium blight, reduced the population level of stunt nematodes (Tylenchorhynchus dubius) on Toronto creeping bentgrass (Agrostis palustris) when applied at a single application rate of 46.6 ounces of formulated product per 1,000 square feet. Rates less than this failed to reduce the nematode population level.

This report was soon followed by a paper by Vargas and Laughlin that outlined the results of a greenhouse-based study in which stunt nematodes and an isolate of Fusarium roseum were used singly and in combination to inoculate the roots of container-grown Merion Kentucky bluegrass (Poa pratensis). The stunt nematode inoculated plants showed a significant reduction in growth rate. The plants inoculated with Fusarium roseum alone did not show a significant reduction in growth rate. When Merion bluegrass roots were inoculated with a combination of stunt nematodes and Fusarium roseum spores, the growth rate was not significantly less than plants that had been inoculated with stunt nematodes alone (see Table 1). The conclusion the authors drew from this work, however, was “Our results indicate that the disease called Fusarium blight of turfgrasses, previously believed to be incited solely by either Fusarium roseum or F. tricinctum involves an interaction with T. dubius.”

In subsequent field studies, Vargas and associates reported significant reductions in the incidence of Fusarium blight with applications of either 4.5 pounds Vydate, 3 pounds Nemacur, 3 pounds Dasanit, or 3 pounds Mocap per 1,000 square feet. In reporting these results, they stated that they felt they gave”... support to the theory that nematodes are the ma-
for pathogen in the disease called Fusarium blight. (10) In order for maximum control to be achieved, they felt that the nematicide ... must be applied early in the season before the Fusarium blight symptoms begin to appear. (10)

More recently, this concept that nematodes are the primary causal factor in Fusarium blight development has been stated as follows: "In Michigan, typical symptoms of Fusarium blight of Merion Kentucky bluegrass frequently only occur in the presence of both stunt nematodes and the fungi Fusarium roseum and F. tricinctum. The stunt nematode increases susceptibility to the fungi and appears to be the predisposing agent for this disease complex. (11)

1978 field study

During July and August 1978, we conducted field trials to (1) evaluate certain nematicides for the control of Fusarium blight and the effect of both fungicides and nematicides on nematode populations in the soil, (2) compare the effectiveness of standard and candidate fungicides for the control of Fusarium blight, (3) determine if a relationship exists between timing of fungicide and/or nematicide applications and disease control with respect to preventive and curative programs, and (4) determine if differences in control occur between one application at a high rate and two applications at low rates of selected fungicides.

The test areas were located on two fairways of a golf course near Blacksburg, Va. Both fairways consisted of irrigated stands of Merion Kentucky bluegrass cut to 1 1/2 inches. Both fairways also had a history of major outbreaks of Fusarium blight.

Four nematicides (Dasanit, Mocap, Nemacur, and Nydate) were tested at rates of active ingredient per 1,000 square feet that have been reported to control Merion Kentucky bluegrass cut to 1 1/2 inches. Both fairways also had a history of major outbreaks of Fusarium blight. Five fungicides (Bayleton, CGA 64251, Fungo 50, RP 26019, and Tersan 1991) were included in the trials. In both the preventive and curative programs, single applications of three of the fungicides (Fungo 50, Tersan 1991, and Bayleton) were made at high rates, while two applications were made of each at low rates. All of the nematicides and the two remaining fungicides (CGA 64251 and RP 26019) were made in single applications. In the preventive trials, the time interval between the two split applications was 30 days, while with the curative tests, 12 days lapsed between the two treatments.

In the preventive program, the clinical symptoms of Fusarium blight did not appear until 30 days after the initial fungicide and nematicide treatments. In the curative program, the disease was in high incidence and uniformly distributed over the test area at the time of the first pesticide applications.

For a listing of the materials tested and their active ingredients and manufacturers, see Table 2. The rates and dates of application for the preventive and curative programs are given in Tables 3 and 4.

The individual plots measured 3 by 10 feet. Each treatment was randomized through five replications. All fungicides were applied with a custom built sprayer equipped with a boom and Tee jet nozzles and delivering 30 psi at the nozzles. The dilution rate for the fungicides was 10 gallons of water per 1,000 square feet. The liquid nematicide, Vydate L, was applied while two applications were made of the two remaining fungicides with a drop spreader. All nematicides were watered into the soil immediately after application.

Throughout the course of the trials, isolations were made from plants collected from areas in the test sites showing symptoms of Fusarium blight.

These consistently yielded pure cultures of Fusarium roseum. In laboratory tests, these isolates were found to be highly pathogenic to the foliage of Merion Kentucky bluegrass.

Disease ratings were based on a visual estimate of the percent foliage blighted per plot. In the preventive program, soil samples were collected from each plot 46 days from the time of nematicide application and nematode population determinations were made. These counts were based on the number of nematodes per 100 cubic centimeters of soil. All data was subjected to analysis of variance and compared by means of Duncan's multiple range test. The results are presented in Tables 3 and 4.

Timing of fungicide application important

In overview, the results of these tests serve to reinforce the basic principle that effective control of Fusarium blight can only be achieved by the application of fungicides on a preventive basis.

Table 1. Fresh weights of Merion Kentucky bluegrass roots inoculated with Fusarium roseum and/or Tylenchorhynchus dubius after 90 days. (From Vargas and Laughlin (11).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fresh weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. dubius-F. roseum combinations</td>
<td>31 a</td>
</tr>
<tr>
<td>T. dubius alone</td>
<td>36 a</td>
</tr>
<tr>
<td>F. roseum alone</td>
<td>83 b</td>
</tr>
<tr>
<td>Untreated control</td>
<td>1.10 b</td>
</tr>
</tbody>
</table>

*Each value is a mean of four replications. Means not followed by the same letter are significantly different at the 5% level according to Duncan’s multiple range test.

Table 2. Materials used in the trials — their active ingredients and manufacturers.

<table>
<thead>
<tr>
<th>Material</th>
<th>Active Ingredients</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayleton (WP)</td>
<td>50% 1-[(4-chlorophenoxy)-3, 3-dimethyl-l-[(H-1,2,4-triazol-l-yl)-2-butanoone</td>
<td>Mobay Chemical Corporation</td>
</tr>
<tr>
<td>CGA 64251 (EC)</td>
<td>3 g a.i./fl oz a.i. confidential</td>
<td>Ciba-Geigy Corporation</td>
</tr>
<tr>
<td>Dasanit (G)</td>
<td>15% 0,0-diethyl 0-[(4-methylsulfonyl)phenylphosphrothioate</td>
<td>Mobay Chemical Corporation</td>
</tr>
<tr>
<td>Fungo 50 (WP)</td>
<td>50% dimethyl 4,4’-o-phenylenebis [3-thiaoilophanate]</td>
<td>Mallinckrodt Chemical Works</td>
</tr>
<tr>
<td>Mocap (G)</td>
<td>10% 0-ethyl S,S-dipropyl phosphorodithioate</td>
<td>Mobil Chemical Co.</td>
</tr>
<tr>
<td>Nemacur (G)</td>
<td>15% ethyl 3-methyl-4-(methylthio)phenyl (1-methylethyl) phosphoramidate</td>
<td>Mobay Chemical Corporation</td>
</tr>
<tr>
<td>RP 26019 (WP)</td>
<td>50% 3-(3,5-dichlorophenyl)-N-(1-methyl-ethyl)-2,4-dioxo-1-imidazolidin(oxy)boximide</td>
<td>Rhône-Poulenc Inc.</td>
</tr>
<tr>
<td>Tersan 1991 (WP)</td>
<td>50% methyl 1-(butylcarbamoyl)-2-benzimidazolcarbamate</td>
<td>E. I. du Pont de Nemours & Co., Inc.</td>
</tr>
<tr>
<td>Vydate (L)</td>
<td>2L methyl N,N’-dimethyl-N’-[methylcarbamoyl]oxy)-1-thioxamidimide</td>
<td>E. I. du Pont de Nemours & Co., Inc.</td>
</tr>
</tbody>
</table>
schedule. Also, the precise rates and timing of application must be determined for each fungicide. Bayleton, for example, applied on a schedule of two 4-ounce applications, with the first treatment being made 30 days prior to the onset of symptoms of Fusarium blight, and the second application being made at the time of the first appearance of symptoms, proved 100 percent control of the disease (Figure 1, Table 3). However, when this material was applied at two times this total amount in one 16-ounce application after the clinical phase of the disease was well developed, only 50 percent control was achieved (Table 4).

Tersan 1991, applied at the 8-ounce rate 30 days prior to the onset of symptoms did not control the disease. When used in a schedule of two 4-ounce applications, with one treatment being made 30 days before the appearance of symptoms and the second application at the time of the first appearance of symptoms, approximately 70 percent control of the disease was achieved (Table 3).

The importance of timing is also seen in the performance of Fungo 50. On a schedule of a single application 30 days prior to the appearance of symptoms, the 16-ounce rate was ineffective. When this material was applied on a curative basis at this same rate, however, a high level of disease control was achieved (Tables 3 and 4).

RP 26019 has been reported to provide levels of Fusarium blight control higher than those shown in these tests. It is highly possible that if this material had been applied on a preventive schedule in which the times of application were just prior to the appearance of the clinical phase of the disease, it would have been more effective.

Nematicides failed to control Fusarium blight

Regardless of whether they were used on a preventive or a curative schedule, the nematicides failed to provide any measure of control of Fusarium blight (Figure 1 and Tables 3 and 4). The population counts from the soil samples showed the presence of five ectoparasitic genera (Tylenchorhynchus, Helicotylenchus, Hoplolaimus, Criconemoides, and Tylenchus) and one endoparasitic genus (Pratylenchus). For the purpose of various comparisons, the counts from the non-treated checks and the nematicide treated plots were grouped as follows: (1) total of all nematodes present per 100 cc soil, and (2) number of nemas present for each genus. The data showed a significant decrease in the population level of Helicotylenchus in the Vydate and Mocap treated plots. All other counts from the nematicide treated plots were not statistically different from the checks.

Another comparison made from the total body of data was a determination if a positive correlation existed between the Fusarium blight incidence ratings and the corresponding nematode count for each plot in the entire test series. Two facets of the nematode count were used: (1) total population level for each plot in the entire test series. Two facets of the nematode count were used: (1) total population level for each plot, and (2) number of nemas present for each genus. The data showed a significant decrease in the population level of Helicotylenchus in the Vydate and Mocap treated plots. All other counts from the nematicide treated plots were not statistically different from the checks.

Table 3. Relative effectiveness of 5 fungicides and 4 nematicides applied on a preventive schedule for control of Fusarium blight of 'Merion' Kentucky Bluegrass.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate/1000 sq ft</th>
<th>Disease Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nematrac (G)</td>
<td>3 lb</td>
<td>7.0 A</td>
</tr>
<tr>
<td>Mocap (G)</td>
<td>5 lb</td>
<td>6.8 AB</td>
</tr>
<tr>
<td>Vydate L (L)</td>
<td>1.8 pt</td>
<td>6.8 AB</td>
</tr>
<tr>
<td>Dansanit (G)</td>
<td>3 lb</td>
<td>6.0 ABC</td>
</tr>
<tr>
<td>Check</td>
<td>—</td>
<td>5.8 ABCD</td>
</tr>
<tr>
<td>Fungo 50 (WP)</td>
<td>8 oz</td>
<td>5.0 BCDE</td>
</tr>
<tr>
<td>RP 26019 (WP)</td>
<td>8 oz</td>
<td>4.8 CDE</td>
</tr>
<tr>
<td>Fungo 50 (WP)</td>
<td>16 oz</td>
<td>4.5 CDE</td>
</tr>
<tr>
<td>Tersan 1991 (WP)</td>
<td>4 oz</td>
<td>4.3 CDE</td>
</tr>
<tr>
<td>Fungo 50 (WP)*</td>
<td>8 oz</td>
<td>4.0 CDE</td>
</tr>
<tr>
<td>Tersan 1991 (WP)</td>
<td>16 oz</td>
<td>3.5 E</td>
</tr>
<tr>
<td>Tersan 1991 (WP)*</td>
<td>4 oz</td>
<td>1.8 F</td>
</tr>
<tr>
<td>CGA 64251 (EC)</td>
<td>12 g.a.i.</td>
<td>1.8 F</td>
</tr>
<tr>
<td>CGA 64251 (EC)</td>
<td>20 g.a.i.</td>
<td>1.8 F</td>
</tr>
<tr>
<td>Bayleton (WP)</td>
<td>16 oz</td>
<td>0.3 F</td>
</tr>
<tr>
<td>Bayleton (WP)*</td>
<td>4 oz</td>
<td>0.0 F</td>
</tr>
<tr>
<td>Bayleton (WP)</td>
<td>8 oz</td>
<td>0.0 F</td>
</tr>
</tbody>
</table>

*All treatments marked with an asterisk were applied twice, August 2 and 14. All other treatments were applied only once, August 6.

†Unless otherwise stated, all dosage levels are given in amount of formulated product.

‡Disease ratings are based on a visual estimate of the percent turfgrass foliage blighted per plot (0 = no blighting, 10 = 100% blighted). Rating date: August 28. Means not followed by the same letter are significantly different at the 5% level.

Table 4. Relative effectiveness of 5 fungicides and 4 nematicides applied on a curative schedule for control of Fusarium blight of 'Merion' Kentucky Bluegrass.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate/1000 sq ft</th>
<th>Disease Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mocap (G)</td>
<td>5 lb</td>
<td>6.8 A</td>
</tr>
<tr>
<td>Nematrac (G)</td>
<td>3 lb</td>
<td>6.4 A</td>
</tr>
<tr>
<td>Dansanit (G)</td>
<td>3 lb</td>
<td>6.4 A</td>
</tr>
<tr>
<td>Vydate L (L)</td>
<td>1.8 pt</td>
<td>6.6 A</td>
</tr>
<tr>
<td>Check</td>
<td>—</td>
<td>6.2 A</td>
</tr>
<tr>
<td>RP 26019 (WP)</td>
<td>8 oz</td>
<td>4.0 B</td>
</tr>
<tr>
<td>CGA 64251 (EC)</td>
<td>20 g.a.i.</td>
<td>3.8 BC</td>
</tr>
<tr>
<td>Fungo 50 (WP)*</td>
<td>4 oz</td>
<td>3.4 BCD</td>
</tr>
<tr>
<td>Bayleton (WP)</td>
<td>16 oz</td>
<td>3.2 BCD</td>
</tr>
<tr>
<td>Bayleton (WP)</td>
<td>8 oz</td>
<td>2.8 BCDE</td>
</tr>
<tr>
<td>CGA 64251 (EC)</td>
<td>12 g.a.i.</td>
<td>2.8 BCDE</td>
</tr>
<tr>
<td>Bayleton (WP)*</td>
<td>4 oz</td>
<td>2.2 CDEF</td>
</tr>
<tr>
<td>Fungo 50 (WP)</td>
<td>8 oz</td>
<td>2.0 DEFG</td>
</tr>
<tr>
<td>Tersan 1991 (WP)</td>
<td>8 oz</td>
<td>1.2 EFG</td>
</tr>
<tr>
<td>Tersan 1991 (WP)</td>
<td>16 oz</td>
<td>1.0 FG</td>
</tr>
<tr>
<td>Tersan 1991 (WP)</td>
<td>16 oz</td>
<td>0.4 G</td>
</tr>
</tbody>
</table>

*All treatments marked with an asterisk were applied twice, August 2 and 14. All other treatments were applied only once, August 6.

†Unless otherwise stated, all dosage levels are given in amount of formulated product.

‡Disease ratings are based on a visual estimate of the percent turfgrass foliage blighted per plot (0 = no blighting, 10 = 100% blighted). Rating date: August 28. Means not followed by the same letter are significantly different at the 5% level.

Table 5. Correlation coefficients for relationship between incidence of Fusarium blight and population levels of parasitic nematodes.

<table>
<thead>
<tr>
<th>Nematode Population Levels</th>
<th>Fusarium Blight Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preventive Program</td>
</tr>
<tr>
<td></td>
<td>Curative Program</td>
</tr>
<tr>
<td>Entire Nematode Population</td>
<td>-51</td>
</tr>
<tr>
<td>Population of Stunt Nematodes</td>
<td>-54</td>
</tr>
</tbody>
</table>

Hoplolaimus, Criconemoides, and Tylenchus and one endoparasitic genus (Pratylenchus). For the purpose of various comparisons, the counts from the non-treated checks and the nematicide treated plots were grouped as follows: (1) total of all nematodes present per 100 cc soil, and (2) number of nemas present for each genus. The data showed a significant decrease in the population level of Helicotylenchus in the Vydate and Mocap treated plots. All other counts from the nematicide treated plots were not statistically different from the checks.

Another comparison made from the total body of data was a determination if a positive correlation existed between the Fusarium blight incidence ratings and the corresponding nematode count for each plot in the entire test series. Two facets of the nematode count were used: (1) total population level for each plot, and (2) number of nemas present for each genus. The data showed a significant decrease in the population level of Helicotylenchus in the Vydate and Mocap treated plots. All other counts from the nematicide treated plots were not statistically different from the checks.
Figure 1. Effectiveness of certain nematicides and fungicides in the control of Fusarium blight of Merion Kentucky bluegrass. All treatments made on a preventive schedule. Rates below are per 1,000 square feet.

A) Vydate, 1.8 pint
B) Mocap, 5 pounds
C) RP 26019, 1 application, 8 ounces
D) Bayleton, 2 applications, 4 ounces each
E) Tersan 1991, 1 application, 8 ounces
F) Non-treated check
Another pro for the course!

Get your charging game up to par with the Lestronic II golf car battery charger

From Lester Electrical, here’s “the battery charger with a brain” for your golf car fleet. The Lestronic II charger completely eliminates over and undercharging of any battery...actually extends battery life and reduces maintenance by precisely charging every time.

The Lestronic II includes many quality features of the original Lestronic, at substantially reduced cost. Exact charging is assured because Lestronics know when to quit. The patented electronic timer on the Lestronic II shuts off when the battery is precisely charged.

Ask for these models...
Model 9470 — 36 Volts D.C., 25 Amp., 115 Volts A.C.
Model 9475 — 36 Volts D.C., 40 Amp., 115 Volts A.C.

Write or phone for complete information.

Fusarium tricinctum. Under the environmental conditions described earlier in this paper, the pathogenic strains of these two species are well capable of functioning as primary parasites of turfgrass leaves, crowns, and/or roots. Nematodes are not needed as predisposing agents, nor are they a primary contributor in their own right to the development of Fusarium blight. If an assay of the soil shows that nematodes are present in population levels sufficient to cause stress in the turfgrass plants, then they should be controlled. Their elimination will take away that source of plant stress. However, it will neither eliminate Fusarium blight nor will it reduce its severity. Fusarium blight can only be controlled by controlling the fungi that cause it.

Literature Cited
YAMAHA'S ELECTRIC CAR
The new standard of excellence

Yamaha's gas golf car set a standard for excellence. Our new electric car sets another.

• No other electric car goes farther on a single charge. Yamaha's new exclusively designed differential makes it possible.

• No other is as powerful. Only Yamaha uses a 2.7 hp motor.

• No other accelerates so smoothly. Yamaha's six-speed, self-lubricating control allows it to do so.

• Only Yamaha has "Charge-Lock™," an exclusive safeguard against driving off during charging.

These are only a few of the differences between the other cars and the new standard of excellence: the Yamaha electric. To experience the rest, contact your local dealer, or Yamaha, for a test ride.

YAMAHA
When you know how they're built.

Yamaha Motor Corp. U.S.A., Golf Car Div., P.O. Box 6620, Buena Park, CA 90622.

Photographed at Rancho Murieta Country Club, Sacramento, California
THE COMPANY CAR
TOUGH ENOUGH FOR THE WHOLE TEAM.

Country clubs—like any other business—have to work hard to compete. And new clubs work harder than most. So why are these folks at the Ahwatukee Country Club—one of the nation’s newest championship courses—smiling? Simple. They know that Melex means business.

beautiful enough for the beautiful people...
Melex always treats your clients like company. It’s fast enough for the jet set (its 2.1 hp engine delivers 5% more power than most competitors). Classy enough for corporate executives. Smooth, quiet and comfortable enough for everyone. And the whole crowd will heartily approve of its tight turning radius. Four speeds in forward and reverse. Automotive steering. Automatic charger. And that’s not all.

Standard—not optional—on every Melex is a hill brake with automatic release plus an automatic seat brake.
engineered for economy...
But we didn’t design Melex merely to win a popularity contest with the crowd at your club. We designed it to take off from the first tee and keep right on rolling—season after season. Which means it will help you make the most of your annual rental revenues by being economical to operate—it covers a lot of ground on a single charge—and by keeping a low maintenance profile. (The laziest mechanics in the country love Melex.)

framed to stay in shape...
Beneath the durable, high-gloss finish of its baked enamel paint, Melex boasts a very sturdy frame. Virtually indestructible, this frame is constructed of specially reinforced, formed tubular steel. And that’s just one reason it’s tough enough for the whole team. built to take good care of itself...
Beyond being manufactured from the highest quality materials available, Melex features a protective undercoating. Wear-and-tear resistant vinyl trim molding. Twin hydraulic shock absorbers to smooth out the lumps and bumps of the nation’s toughest courses, plus power to handle the highest hills.

As for options, heavy-duty batteries, hard tops, tinted windshields, rear view mirrors, wheel covers and industrial conversion kits are available. And whether you take Melex as it is—or deck it out—you can be sure that service is all part of the package. Melex quality engineering is backed by the full service assurance provided by our national network of dealers. Dealers equipped with computerized parts warehouse facilities and mobile service vans to keep your Melex on course.

That’s why we call it The Company Car. Melex has much more to offer than convenient features and classy looks. At the bottom line, this tough little golf car is more than a crowd pleaser. It will make your accountant stand up and cheer.

Melex means business.

CHOICE DEALERSHIPS STILL AVAILABLE

Ahwatukee Country Club
Phoenix, Arizona

melex
4 & 6 WHEEL ELECTRIC GOLF CARS
MELEX USA, INC.
1200 FRONT STREET • SUITE 101
RALEIGH, NORTH CAROLINA 27609
PHONE (919) 828-7645

Circle 118 on free information card
Course design and equipment simplify maintenance

by Don Curlee

Golf course owner Gordon Knott of Fresno, Calif., believes a full supply of equipment and maintenance-minded design are the surest ways to save money and insure the best in golf course upkeep and player appeal. But don’t expect his Fig Garden Golf Course to be a showroom of the latest mechanical marvels. He irrigates with a quick-coupler system, mows fairways with two units that are nine and 15 years old, and cuts greens with mowers that are 1977 and 1969 models.

Knott and Superintendent Cal Shipman agreed that equipment must be maintained and repaired diligently. With an “ounce of prevention” applied regularly, they make it last, one reason they can afford more of it.

The 18-hole Fig Garden layout is a privately-owned, public play operation built by Knott and partner Nick Lombardo as a 9-holer in 1958. In 1960 they added nine more holes on the 120-acre, river-bottom site. By adding strategically-located trees year by year they have created a beautifully wooded and moderately challenging 6,340-yard course that has found unusual loyalty among its regular players.

Except for parking lot, clubhouse and maintenance building the entire acreage is irrigated, fertilized, sprayed and mowed. None of it is maintained as rough, nor are any areas left bare between fairways. It’s a 120-acre, fence-to-fence grass farm.

Terrain is primarily flat, with only slight, natural undulations which were smoothed and rounded in course construction to ease maintenance requirements. Most of the greens are slightly elevated, but with moderate slopes that mowers and other equipment can negotiate easily. The elevation enhances drainage also.

The steep river bluffs adjacent to the course have been used as backdrops for two par-3 holes, and as
an elevated tee for the 18th. A short, but sharp dogleg hole, number 13, was guarded originally by a large fairway trap. To simplify maintenance the trap was filled in, and several trees were planted, making it just as risky for players to cut the corner, but much easier to maintain.

The equipment investment at Fig Garden is about $150,000, but making extensive use of it allows Superintendent Shipman to limit his crew to four in addition to himself, plus a night irrigator during the summer months.

"I don't feel we have an excess of equipment," Knott said, "so I am always amazed to hear a superintendent or manager of some private club tell me he doesn't have. I know these clubs take in much more money than we do."

Because Shipman believes in setting an example for his workers he spends most of his time working shoulder to shoulder with them. When he isn't on the course he can be found in the maintenance shop doing his own mechanical work.

The work assignments break down this way: one man mows fairways, two mow and maintain greens, and the other takes care of traps and performs general maintenance and odd jobs. Cooler weather, when the greens don't require both men, is catch-up time for a range of maintenance projects.

Eight-hour days are standard, starting at 6 a.m. or earlier during summer's long days. The days end no later than 2:30 p.m. Saturdays, Sundays and holidays are limited to greens cutting and cup setting. Shipman is not hesitant to grant overtime to his crew, and finds it preferable to hiring additional personnel, for both him and his workers.

He hired a school teacher to irrigate at night while school was out last summer. He sleeps better knowing he will be called if troubles occur during the night. Summer salary and fringes for the vacationing teacher, who is expected to continue his part-time arrangement, total about $6,000. Shipman and Knott figure it takes many years at that rate to add up to the price of an automatic system. Estimates have ranged between $200,000 and $250,000.

While daily irrigation from April to October is a must, too much water combined with the extreme heat of the arid San Joaquin Valley can create unhealthy, fungus-prone greens. "Heat is an element that superintendents in the San Joaquin Valley have to live with in the summer," Shipman said.

He has recorded a temperature of 120°, ½-inch deep in the practice putting green at Fig Garden.

Shipman lives with the heat by watering the Penncross greens amply, but carefully, and avoiding standing water during the day at all cost. A mid-afternoon syringe treatment cools surfaces when temperatures are highest.

Air movement across the course is a natural barrier to fungus and disease conditions, but with steep bluffs adjacent to the course and across the river Fig Garden finds circulation inhibited at times. That's when Shipman exercises care and a close watch for disease symptoms. "When I can feel that heat and humidity rising up from the ground, and just lying there about waist high I know I've got a potentially dangerous situation," Shipman said.

"Last year we lost two greens to pythium. I check the greens for disease every morning, and that morning was no different, but I missed the symptoms. When my greens cutter found it he called. We knew we had a crisis, because by the time you see pythium it's too late. We might have overwatered slightly, or maybe the disease was spread by mowing. Humidity was about 80 percent at the time," Shipman recalls.

His disease prevention schedule includes spraying with Actidione thiram by Tuco every seven days during June, July and August at a rate of 2 ounces per 1,000 square feet. To maintain vigor and color in his greens through the hot season Shipman adds 3 ounces of Ciba Geigy iron chelate to the fungicide spray. If conditions allow, he leaves the application unirrigated for 24 hours for maximum effectiveness.

Shipman also applies Koban as a pythium preventative, a step he considers expensive, but necessary. He applies it as a spray as often as every 14 days, or as conditions demand, from June through August at 2 ounces per 1,000 square feet.

Shipman has developed some interesting strategy in the universal superintendent's crusade — against Knott shows where brush was cleared near number 12 tee to make river visible for players.