Organic and Biologically Amended Fertilizers

Can using these materials reduce snow mold damage on golf turf?

By Adam Van Dyke

Superintendents are inundated with commercial products containing organic sources of nutrients and biological organisms for managing turf. Beyond the “good feelings” described by Zontek et al. as reasons turf managers use “natural” or “organic” products, incorporating these types of materials into golf management practices may be a way to reduce synthetic inputs and consequently provide other benefits to turfgrass systems.

Potential benefits of using organic and biological materials may include improving soil structure and increasing beneficial microbes.

Snow molds (gray, *Typhula* spp.; and pink, *Microdochium nivale*) can occur annually in the Intermountain West and devastate golf turf if not treated with synthetic fungicides. One fungicide used to control these diseases, pentachloronitrobenzene (PCNB), was under federal review in 2008 and was the subject of a federal stop-sale, lifted in August 2011.

Given the uncertainty over future uses of PCNB in turf and an industry movement toward more sustainable management, alternatives to fungicides for snow mold control must be studied. This study tested commercially available organic and biologically amended fertilizers in the field under golf course conditions. The objective was to determine if these products can reduce snow mold damage of highly maintained golf turf.

**Materials and methods**

The experiment was conducted from 2009 to 2011 on a fairway at Willow Creek Country Club in Sandy, Utah using three replicate 6-foot by 10-foot plots.

The fairway was a mixture of perennial ryegrass (*Lolium perenne* L.) and creeping bentgrass (*Agrostis palustris* Huds.) mowed three times a week at 0.75 inches. Permanent snow cover begins around late-November or December and normally lasts more than 90 days. However, snow cover lasted less than 60 days the first winter (2010) and no snow mold damage occurred. Year 1 of the experiment was repeated at Glenwild Golf Club in Park City, Utah in 2010 — the same time Year 2 was being conducted. Continued on page 36
Continued from page 35

at Willow Creek — to recover snow mold data after one growing season. The repeat of Year 1 was conducted on Kentucky bluegrass (*Poa pratensis* L.) rough mowed at 1.5 inches two times each week using three replicate 5-foot by 5-foot plots. Neither test area was treated with fungicides nor additional fertilizers.

Two granular organic fertilizers and two biologically amended soil inoculants containing nutrients were applied in season-long programs for two years and evaluated against a synthetic fertilizer control and a PCNB fungicide check. The synthetic fertilizers are listed in Table 1. The fungicide check treatment consisted of Turfcide 10G, a.i. 10% PCNB (Chemyta Corporation) applied once prior to snow cover. The organic fertilizers included a 5-2-4 material (Sustane Natural Fertilizers) and an experimental material “PTS1 organic” (analysis and company confidential). Biological materials included TurfPro liquid 0.5:0.2:0 (Organic Products Company) and Growth XL 16:4:8 (3 Tier Technologies).

Programs for snow mold control were determined by manufacturers’ recommendations. Organic fertilizers were applied by hand every 60 days at 0.75 pounds of nitrogen (N) per 1,000 square feet from May to November each year. Synthetic fertilizers were applied at the same rate of N to normalize the treatments, but differences in other nutrients did occur.

Biologically amended treatments were foliar applied with a pressurized backpack sprayer from May to November in each year. TurfPro liquid was applied every 14 days at 6 fluid ounces per 1,000 square feet the first year, and at 30-day intervals at the same rate the second year. TurfPro dry (1.8-0-0.1) was also applied to these plots at 10 pounds per 1,000 square feet prior to snow cover each year (Table 1). Growth XL was applied every 30 days at 3 fluid ounces per 1,000 square feet the first year, and 6 fluid ounces per 1,000 square feet at 30-day intervals the second year. Growth XL and TurfPro materials provided some nutrition to the turf but needed to be supplemented with additional fertilizers. Granular fertilizers used in the synthetic control treatment were applied at half the rate of N (Table 1).

Snow mold damage was

<table>
<thead>
<tr>
<th>TABLE 1: COMMERCIAL FERTILIZERS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>TREATMENT</strong></td>
</tr>
<tr>
<td>Synthetic control</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PCNB check</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PTS1 organic</td>
</tr>
<tr>
<td>5-2-4 organic</td>
</tr>
<tr>
<td>Turf Pro biological</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Growth XL biological</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
visually assessed after snow melt at each location on a 0 to 100% scale, with 100% having complete damage and analyzed for differences. Gray snow mold infection centers were also counted at the Willow Creek location in 2011 and analyzed for differences. Reductions in disease severity were determined as a percentage of the synthetic control, with effective suppression being greater than 70% reduction as explained in Nelson and Craft.

**Snow mold control**

None of the organic or biologically amended fertilizers tested in this experiment adequately controlled snow mold (<10% affected area, Hsiang and Cook, 2001) or had acceptable suppression (greater than 70% disease reduction, Nelson and Craft, 1992a) in both years (Table 2).

PCNB provided the best statistical control in both years, reducing damage 96% in Year 1 at the Glenwild location and 98% in Year 2 at the Willow Creek location.

Applications of 5-2-4 organic fertilizer and TurfPro biological materials appeared to reduce snow mold damage to Kentucky bluegrass compared to applying synthetic fertilizers alone after one year.

These materials are not registered fungicides and did not provide acceptable control of gray snow mold (Hsiang and Cook, 2001) — while applications of PCNB did. Furthermore, statistical reductions in snow mold damage were not observed after a second year of applying these materials. The lack of consistent results indicates a need for further studies.

The use of organic sources of nutrients and/or biologically amended materials may not replace the need for fungicides, but perhaps incorporating them into management practices may be a way to reduce the rates of fungicides.

Adam Van Dyke, M.S., is owner and president of Professional Turfgrass Solutions, LLC. He specializes in conducting scientific studies and consulting for the golf industry. He can be reached at adam@proturfgrass-solutions.com.

### REFERENCES


---

**TABLE 2: SNOW MOLD CONTROL**

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>YEAR 1</th>
<th>YEAR 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glenwild location</td>
<td>Willow Creek location</td>
</tr>
<tr>
<td></td>
<td>Damage$^a$ 5-5-11</td>
<td>Disease reduction$^a$ 2-16-11</td>
</tr>
<tr>
<td>Synthetic control</td>
<td>81.7 a$^1$</td>
<td>---</td>
</tr>
<tr>
<td>PCNB check</td>
<td>3.3 d</td>
<td>96</td>
</tr>
<tr>
<td>PTS1 organic</td>
<td>60.0 abc</td>
<td>27</td>
</tr>
<tr>
<td>5-2-4 organic</td>
<td>40.0 c</td>
<td>51</td>
</tr>
<tr>
<td>Turf Pro biological</td>
<td>53.3 bc</td>
<td>35</td>
</tr>
<tr>
<td>Growth XL biological</td>
<td>71.7 ab</td>
<td>12</td>
</tr>
<tr>
<td>ANOVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect</td>
<td>df</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>6</td>
<td>***</td>
</tr>
</tbody>
</table>

$^a$Granular fertilizers (synthetic and organic) were applied every 60 days at 0.75 pounds of nitrogen per 1000 sq. ft. for two growing seasons (Year 1, Year 2). Turf Pro biological was foliar applied at 6 fl oz per 1000 sq. ft. at 14 day intervals the first year, and 30 day intervals the second year. Growth XL biological was foliar applied at 3 fl oz (Year 1) and 6 fl oz (Year 2) per 1000 sq. ft. on 30 day intervals.

$^b$Snow mold damage rating scale 0-100%, where 100= entire plot damaged.

$^1$Determined as a percentage of synthetic control plots with >70% having effective suppression (Nelson and Craft, 1992a).

$^y$Mean number of spots per three replicate 60 sq. ft. plot.

*, **, ****, ns, significant at P≤0.05, 0.01, 0.001, or not significant respectively.