Demands for lower rates and shorter residuals make bringing new insecticides to market much more difficult

In a previous era, insecticides were easier for companies to create. The organophosphates, carbamates and arsenicals provided broad-spectrum control on numerous turf-destroying bugs. But superintendents also realized the effect those chemicals had on the environment.

The regulatory climate has changed dramatically over the past 10 years, and such broad-brush insecticides are no longer acceptable to either the EPA or superintendents — or the companies that manufacture them, for that matter. That makes the job of the basic manufacturers more difficult when it comes to developing new insecticide technology.

A confluence of EPA regulations and superintendents' changing attitudes toward insecticides now have to produce products that:

- have shorter residual times;
- can be applied less frequently;
- are safer to apply; and
- have longer periods of control.

Given those parameters, it may sound like the chemical manufacturers have an impossible task on their hands. But despite the hurdles that are now placed in front of them, they're still doing the research and making investments to meet superintendents' needs.

EPA gets tougher

Chemical companies have been so effective in meeting the EPA's requirements for shorter residual times and lower application rates that they may be victims of their own successes — at least when it comes to developing new insecticide products.

Costs for registering new products are on the rise, in part because of the success of new products like Topchoice and Merit (see related story, pg. 82). Bayer Environmental Science's insecticides set the standard by which new insecticides are judged, says Bryan Gooch, business manager of insecticides for Bayer.

The active ingredients of each act on specific sites within insects' nervous systems, which greatly lowers mammalian toxicity. They are regarded as more environmentally friendly because they provide long residual control at low application rates.

"Merit was one of the first insecticides on the market to have low use rates and a short residual," Gooch says. "From an EPA per-

Continued on page 76
Continued from page 74

Feeling the Squeeze

spective, the bar has been raised, which makes it more difficult to bring anything new to market.”

Kyle Miller, senior technical specialist for the turf and ornamental division of BASF Professional Turf, agrees that registering new insecticides has become more difficult.

“Insecticides have traditionally been characterized by higher toxicity than other pesticides,” Miller says. “The EPA is requiring more and more testing to make sure new products have a minimal impact on the environment. Those standards increase development costs and slow down the production of new compounds.”

More state-specific regulations are also raising the cost of bringing new chemicals to market, Gooch says. “The additional research and data that state and federal governments now require is an expensive undertaking, even for large companies.”

Gooch says such restrictions are fueling the merger activity within the market as companies hope to pool their research-and-development resources in the search for new chemistries, such as BASF’s merger with TopPro Specialties and Bayer’s merger with Aventis.

What superintendents want

Ironically, the experts say that what superintendents want in their insecticides dovetails nicely with the EPA’s restrictions.

Continued on page 78

Key Turfgrass Pests, Their Host Plants, Symptoms and Suggested Damage Thresholds.

<table>
<thead>
<tr>
<th>Arthropod pests</th>
<th>Preferred hosts</th>
<th>Damage symptoms</th>
<th>Suggested damage thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bermudagrass mite</td>
<td>Bermudagrass</td>
<td>Yellowed leaf tips, shortened internodes resulting in tufted growth.</td>
<td>Not determined</td>
</tr>
<tr>
<td>Billbugs</td>
<td>Cool-season grasses, bermudagrass, zoysia grass</td>
<td>Larvae burrow down grass stems to the plant crown, killing stems and larger turf areas. Often misdiagnosed as drought, other insects or disease.</td>
<td>1 to 6 billbugs per sq. ft.</td>
</tr>
<tr>
<td>Caterpillars</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armyworm</td>
<td>Many grasses, small grains, legumes</td>
<td>Skeletonized or completely consumed foliage, with circular bare spots.</td>
<td>3 to 4 larvae per sq. ft.</td>
</tr>
<tr>
<td>Cutworm</td>
<td>Many grasses and crops</td>
<td>Circular spots of clipped or dead grass near holes.</td>
<td>Not determined</td>
</tr>
<tr>
<td>Fall armyworm</td>
<td>Bermudagrass, cool-season grasses, grains</td>
<td>Skeletonized or completely consumed foliage.</td>
<td>Not determined</td>
</tr>
<tr>
<td>Sod webworm</td>
<td>Cool-season grasses, small grains</td>
<td>Small patches of chewed leaves or stems.</td>
<td>Not determined</td>
</tr>
<tr>
<td>Tropical sod webworm</td>
<td>Most warm-season grasses</td>
<td>Notched leaves, ragged appearance.</td>
<td>5 to 8 larvae per sq. ft.</td>
</tr>
<tr>
<td>Chinch bugs</td>
<td>Cool-season grasses, St. Augustinegrass</td>
<td>Foliage yellows, wilts and dies in small spots, then larger patches.</td>
<td>15 to 25 chinch bugs per sq. ft.</td>
</tr>
<tr>
<td>Mole crickets</td>
<td>Bermudagrass, bahiagrass, other warm-season grasses</td>
<td>Tunneling below the soil surface and root feeding result in bare patches of turf.</td>
<td>2 to 4 tunnels per sq. ft.</td>
</tr>
<tr>
<td>Spittlebugs</td>
<td>Centipedegrass, St. Augustinegrass</td>
<td>Purple-red striping in turf, wet and spongy to walk on.</td>
<td>Not determined</td>
</tr>
<tr>
<td>White grubs</td>
<td>Annual bluegrass Kentucky bluegrass, bermegrasses</td>
<td>Root feeding results in wilting and gradual thinning of turf.</td>
<td>40 to 100 grubs per sq. ft.</td>
</tr>
<tr>
<td>Black turgrass ataenius</td>
<td>Kentucky bluegrass, tall fescue, bermudagrass, thin-skinned fruits</td>
<td>Root feeding results in wilting and dying grass. Grubs make mounds.</td>
<td>5 to 7 grubs per sq. ft.</td>
</tr>
<tr>
<td>Japanese beetle</td>
<td>Most grasses</td>
<td>Grubs feed on roots and root hairs, resulting in turf wilting and thinning. Adults skeletonize tree and shrub leaves.</td>
<td>10 to 20 grubs per sq. ft.</td>
</tr>
<tr>
<td>Masked chaferes</td>
<td>Pasturegrasses and turfgrasses</td>
<td>Larval root feeding weakens grass, resulting in wilting and dieback. Adults do not feed.</td>
<td>10 to 20 grubs per sq. ft.</td>
</tr>
<tr>
<td>May and June beetles</td>
<td>Many grasses</td>
<td>Grubs feed on roots, resulting in wilting and dieback. Adults eat leaves of grasses, herbs, shrubs and trees.</td>
<td>3 to 6 grubs per sq. ft.</td>
</tr>
<tr>
<td>Oriental beetle</td>
<td>Turfgrasses and sugarcane</td>
<td>Grubs feed on roots near the soil surface. Adults feed on several flowering plants.</td>
<td>6 to 8 grubs per sq. ft.</td>
</tr>
</tbody>
</table>

Thresholds vary depending on the condition and use of the turf.
"Superintendents are looking for insecticides that are not going to cause them problems," says Dave Ross, turf and ornamentals technical manager for Syngenta Professional Products. "They're looking for products that are more targeted to specific pests and products that don't damage the environment."

Miller says superintendents have been asking for insecticides that don't remain in the soil and pose a threat to the environment for an extended period of time.

In a tight economy, superintendents are also looking for insecticides that are cost effective, and on that front they may be in luck. Miller says several of the old insecticide chemistries are going off patent in the next few years, and he expects to see an increase in post-patent products. "These will introduce more competitive pricing into the market," Miller says.

Gooch acknowledges that there will be competition for Bayer's Merit grub control product. "We expect Merit look-alikes to surface over the next several years."

Finally, Gooch says superintendents are looking for products they can use once per season instead of repeated applications. "They're looking for guaranteed results," he says. "They want chemicals they can apply once and forget about for the rest of the season. That reflects a changed mindset for superintendents."
Continued from page 78

Combinations for their convenience and predicts they will see more such products in the future.

“They’re looking to save the associated labor and product costs by putting down one application instead of two separate ones,” Gooch says. “Our formulators throughout the country are reporting a significant increase in those kinds of requests.”

John Price, technical sales representative for Dow AgroSciences, says he’s hearing the same sort of demand with Mach 2, an insecticide that targets the white grub larvae of several species, cutworms, sod webworms and armyworms with the active ingredient halofenozide. The company’s distribution channel partners report that superintendents want to apply fertilizer with grub control.

“We’ve got a new 2-pound rate that works well with fertilizers,” Price says. “It allows superintendents to give the turf a nutrition boost at the same time they’re preventing grubs from destroying turf from underneath.”

BASF’s Miller says his company is developing an insecticide to deal with surface insects, but that it’s several years from production. Initial research indicates the new insecticide could be used at rates in the range of 3 grams to 4 grams of active ingredient per acre. He also indicated that it would have a shorter residual. “We think superintendents will welcome this new technology when it becomes available,” he says.

But for now, superintendents will have to get by with what’s currently on the market — and Dow’s Price says that’s OK.

“Right now, no matter what your pest problems, there are options out there for superintendents,” Price says. “That’s what’s nice about the choices on the market — each superintendent can find a product that helps them deal with a specific problem.”

What Will Bug You This Year?

With the help of members of the USGA Green Section staff, here are some ideas about what may be the biggest insect pests of 2004.

Patrick O’Brien, director of the USGA’s Southeast Region, says superintendents are already bracing for an onslaught of mole crickets once the soil starts to warm. He says superintendents in the area should also be on the lookout for nematodes and cutworms.

In the Mid-Atlantic Region, director Stan Zontek says the big news is the pernicious hyperodes weevil is spreading south and west from New England. It has been spotted as far west as Pittsburgh and as far south as Annapolis, Md. His colleague, agronomist Darin Bevard, says superintendents can also expect annual visits from European chafer, Japanese beetles and cutworms.

Matt Nelson, agronomist in the Northwest Region, says billbug activity has spiked in the past several years in southern Idaho and northern Utah, but that superintendents are starting to use Merit to deal with them, thereby avoiding the worst of the damage.

Superintendents in the Southwest should be concerned about reports that mole crickets have been spotted near the California/Arizona border, says Pat Gross, Southwest Region director. That’s a new bug to the area.

“We already have a few courses dealing with red imported fire ants,” Gross says. “We’ll also have the usual cutworms, armyworms and white grubs — but they aren’t serious problems if superintendents keep their eyes open.”

Frank H. Andorka Jr., Managing Editor