Observations on Bentgrass puffiness


This paper involves a series of observations concerning the effect of nitrogen fertilization treatments such as carriers, rates and time of application on variations in the puffiness of a bentgrass turf. The turf was composed of a mixture of Seaside and Penncrest creeping bentgrass, which was mowed three times a week at a quarter of an inch. Watering was done three times a week during periods of moisture stress with about a quarter of an inch of water per application. The soil was a loam containing approximately 14 per cent clay. The experimental area received a groove cultivation treatment plus a sandy loam topdressing once a year. The turf was 12 years old when the experiments started.

The treatment comparisons in this study included an activated sewage sludge, urea and urea-formaldehyde with each applied at two nitrogen levels, four and eight pounds of actual nitrogen per 1,000 square feet per year. The fertilization schedule involved (a) a uniform seasonal application applied in eight equal applications from March through October, (b) four equal applications applied during the cooler periods of March, April, September and October, and (c) four equal applications applied during the warm periods of May, June, July and August.

After four consecutive years of selected nitrogen fertilization treatments, differential responses in the form of puffiness became evident. Visual ratings of this effect were made with the degree of response being more evident in the following year.

Results during the fourth and fifth year of fertilization treatment indicated that puffiness was greater at the eight-pound nitrogen treatment than at the four-pound level, regardless of the type of nitrogen carrier involved. A comparison of the three carriers showed area resulted in greater puffiness than the two organic carriers.

Some very interesting results were observed in relation to the season of the year in which the nitrogen was applied. The warm season fertilization treatment (four equal applications in May, June, July and August) resulted in a minimum degree of puffiness. 

Turfgrass research review
by Dr. James B. Beard

HERE ARE YOUR BUCKNER PROFESSIONALS

ALABAMA
McGowin-Lyons Hardware & Supply Company
Mobile (205) HE 2-8721
ARIZONA
Keenan Pipe and Supply Co.
Tucson (602) 792-3000
Turf Irrigation & Water Works Supply
Phoenix (602) 276-2451
ARKANSAS
Capital Equipment Co.
Little Rock
(501) FR 2-7115
CALIFORNIA
American Sprinkler & Supply
Los Angeles
(213) 223-2424
Controlled Irrigation
Fresno (209) 222-4843
Emerald Irrigation Supply Co.
Salinas (408) 422-9026
Ewing Turf Products
San Leandro
(415) 357-9530
Ewing Turf Products
Sacramento
(916) 922-5618
Irrigation & Plumbing Supply
Santa Maria (805) WA 2-2312
Kern Turf Supply, Inc.
Bakersfield (805) FA 2-4068
COLORADO
Colorado Western Distributing Co.
Grand Junction
(303) 242-0556
The Warner Company, Inc.
Denver (303) FL 5-7371
CONNECTICUT
Hartford Equipment Company
Hartford (203) JA 7-1142
FLORIDA
Hector Turf & Garden Supply
Miami (305) OK 1-8800
Peninsula Supply Company
Fort Lauderdale
(305) 524-3611
Southern Mill Creek Products
Tampa (813) 626 2111
GEORGIA
Russell Daniel Irrigation Co.
Atlanta (404) LI 6-0168
ILLINOIS
Sprinkler Irrigation Supply
Glen Ellyn (312) 469-8730
INDIANA
Sprinkler Irrigation Supply
Glen Ellyn, Ill.
(312) 469-8730
KANSAS
U.S. Supply Co.
Kansas City (816) 842-9720
KENTUCKY
Irrigation Supply Company
Louisville (502) 385-8400
LOUISIANA
Southern Specialty Sales Co.
New Orleans (504) 486-6101
MARYLAND
Lewis W. Barton Company
Simpsonville 531-5051
MASSACHUSETTS
The Clapper Company
West Newton
(617) B1 4-7900
MICHIGAN
Sprinkler Irrigation Supply
Royal Oak (313) LI 8-7272
MINNESOTA
Milco Engineering Inc.
Minneapolis (612) 724-3655
MISSOURI
Bemmann Distributing Company
St. Louis (314) WY 3-4490
NEBRASKA
Big Bear Equipment, Inc.
Omaha (402) 393-2220
NEVADA
Arizona Nursery Company
Las Vegas (702) 345-4621
Penor Fertilizer Co., Inc.
North Las Vegas (702) 649-1551
NEW JERSEY
Lewis W. Barton Company
Huntingfield
(609) HA 9-6500
Halco Chemical Company
Keene Valley (201) BR 6-5918
NEW MEXICO
Albuquerque Chemical Company
Albuquerque
(505) 247-2321
NEW YORK
Grassland Equipment & Irrigation
Utica (315) ST 5-8411
Halco Chemical Company
Glens Falls, L. I.
(516) OB 6-2727
NORTH CAROLINA
E. J. Smith & Sons, Co.
Charlotte (704) 333-4114
OHIO
Sprinkler Irrigation Supply
Covington (513) 473-7567
OKLAHOMA
Southwest Irrigation Company
Tulsa (918) NA 7-7272
OREGON
Uni Pipe & Supply Co.
Eugene (503) 688-6511
United Pipe & Supply Co.
Portland (503) 981-9588
TENNESSEE
Ernest Hardison Seed Co.
Nashville (615) LA 6-2659
Knox Valve & Fitting Co.
Knoxville (615) 588-7475
Uticon Co., Inc.
Memphis (901) 391-9093
TEXAS
Goldwell's of Texas, Inc.
Dallas, Fort Worth, Houston, San Antonio
Momsen, Dunnegan, Ryan
(214) 513-1021
UTAH
Conley Company
Salt Lake City
(801) NA 4-5208
VIRGINIA
R. P. Johnson Sons, Inc.
Weytheville (703) 228-2136
WASHINGTON
Penler Company
Seattle (206) MA 2-2891
Pelton Company
Spokane (509) FA 7-9571
WEST VIRGINIA
Young Feed and Seed Co.
Charleston (304) 01 2-2104
WISCONSIN
Sprinkler Irrigation Supply
Glen Ellyn, Ill.
(312) 469-8730
CANADA
Pacific Irrigation Ltd.
Vancouver (604) 682-6132
compared to the fertilization applied during the cool temperature periods or in eight equal applications throughout the growing season. Also, the eight-pound application rate of ureaformaldehyde applied in March resulted in significantly greater puffiness than when applied in September. Comments: The author of this article defines puffiness "as dense, loosely attached patches of top growth that tend to buckle into a higher position than the immediately surrounding turf." It commonly occurs on turf maintained under putting green conditions and results in more scalping and relatively poor putting quality or poor ball roll. Puffiness will vary with the particular bentgrass variety involved and correlates with the rate of vegetative growth.

The basic response which underlies all observations in this paper is that excessively high levels of nitrogen nutrition result in excessive growth and the resulting puffiness. In the case of the nitrogen carriers, the greater percent nutrient availability of urea at a much more rapid rate has stimulated excessive growth. In the case of the timing of nitrogen fertilization, the mid-summer fertilization during periods of relatively slow growth due to high temperature stress has limited the degree of nitrogen response and resulting puffiness compared to the cool portions of the growing season where growth is relatively rapid and where responses to higher nitrogen fertility are more evident in the degree of puffiness. This data indicates that when fertilizations are made in the cooler portions of the growing season it is important that the rate be sufficiently low to avoid excessive stimulation of top growth. The level of nitrogen to be applied should only be that amount which is sufficient to maintain color and to provide an adequate level of recuperative ability from injury caused by environmental stress, turfgrass pests or traffic.

Other References of Interest:

INSTANT GREENERY

That's what you will think when you see all that green popping up after your Miller irrigation system is installed. Miller sprinkling systems are built-in player-pleasers that produce results. These results come from know-how acquired through over 40 years of experience and installation of more than 100 successful irrigation systems. So, call Miller today, ...your players will thank you!!

MILLER SPRINKLING SYSTEMS

Division of A. J. Miller, Inc.
1320 North Campbell Road • Royal Oak, Michigan • 313, 398-2233
40 years of experience in designing and installing sprinkling systems