Bolt it Down
or Anchor it in
the Ground
STANDARD’S NEW
SPIKE
KLEENER

Rustproof cast aluminum base
(notice the easy-to-clean
design) can be bolted to a
deck; or, using the turf-auger,
it can be firmly anchored to
the ground . . . set anywhere
you want, moved when you
want. Makes it practical to
install on tees! Replaceable
brush is of super-stiff, long-
wearing bristles deeply
imbedded in a solid plastic
plate.

STANDARD MFG. CO.
Cedar Falls, Iowa 50613

Dear Sir:
The article in the April issue of
GOLFDOM by Roger Ganem enti-
tled “The Importance of the Shaft”
is very informative. The basic
premise “to get the clubhead in the
proper hitting position precisely at
the instant of impact . . .” is the
fundamental criteria for a good
match between shaft and clubhead
for a particular golfer. However,
the article also suggests that alu-
mium shafts are not as fast as steel,
which is not as well considered as
the rest of the article.

The optimum shaft provides the
greatest momentum at impact in
addition to being in the proper pos-
tion. Certainly the shaft should be
straight at impact, which means the
clubhead is at its maximum speed.
But to do this, the spring-like na-
ture of the shaft which causes the
clubhead to accelerate to a peak
velocity, must be timed to the in-
dividual’s swing speed rather than
“as fast as possible.” The time re-
quired for a shaft and clubhead to
recover from a position of greatest
bend to the straight position should
relate to the time required by the
golfer in accelerating the club
through the downswing to impact
with the ball. It is a safe bet that
many golfers do not pick the proper
head weight and shaft flex to match
their particular swing pattern with-
out sound professional help. This
problem is amplified with the lighter
weight shaft which changes the
apparent stiffness, since the club
weight is reduced. Consequently,
an aluminum shafted club may re-
quire two or more additional points
of swingweight added to the club-
head to develop the best results.

The statement that “Aluminum
. . . does not return the club to its
usual position as fast” is simply not
accurate. It is possible to design an
aluminum shaft to be dynamically
interchangeable with any steel shaft

Continued on page 18
Letters to the editor
Continued from page 16

... design. Furthermore, the aluminum shaft can be produced with truly consistent flexibility over the length of the taper.

The statement is made that "To be good, a golf shaft must return as fast as possible." If this were true, every golfer would use an extra-stiff shaft. The time of recovery is referred to as a coefficient of restitution. This term infers that, as a coefficient, it must be related as a ratio to some standard value. To the best of my knowledge, there is not a time period of recovery and amount of deflection for a golf shaft that is accepted as a standard value. Finally, when the shaft is mounted in a club, the club should oscillate at the designed rate and a faster (or stiffer) shaft will require greater weight in the clubhead to maintain the desired oscillating frequency of the clubhead. The rate of recovery of a shaft is directly related to its natural oscillating frequency and this value is easily measured on a vibration testing machine. Some day perhaps, shafts or preferably golf clubs will be rated by resonant oscillating frequency and weight, which would be more appropriate in fitting a golfer. Our tests indicate that the aluminum is not slower than steel, and it can be produced to a particular value desired by the club designer.

The fundamental advantage of aluminum is that the lighter weight and thicker wall can be used to much greater advantage in designing separately for longitudinal flex characteristics, light weight, and for the torsional rigidity desired. By choosing aluminum, the designer avoids a major limitation inherent with the thin-walled steel shaft. A thin-walled shaft of any metal will tend to become elliptical during bending. As a shaft ovals in bending, the stiffness diminishes. Consequently, for a given diameter in the handle of a shaft, there is a minimum wall thickness necessary to keep the shaft round and preserve stiffness.

Since the modulus of elasticity and density are nearly identical for stainless and the common steels, stainless steel shafts have the same geometric problem that has limited further weight reduction in steel shafts. The aluminum golf shafts currently available have much thicker walls and do not approach a critical wall-to-diameter ratio, so the club designer has much more freedom in designing lighter weight shafts. He can increase torsional stiffness, for better control, and still maintain a particular longitudinal flex contour. It is true that the thicker walled aluminum shaft soaks up more shock than steel, but this does not have any effect on the performance of the shaft.

We are convinced that there is no material, including stainless steel, better suited to the manufacture of golf shafts than the aluminum alloys properly processed for high strength. The technical information is available to support this conclusion, and the high strength aluminum alloys certainly would be appropriate to fundamental improvements in shaft and club design suggested in Mr. Ganem's article.

Mike Farguson
Easton Aluminum Tube
Van Nuys, California

SPIKEPROOF

GOLFTILE Interlocking Rubber Flooring

Stays beautiful under heaviest spike traffic... won't mar, scratch, chip or dent. Prevents slipping and sliding. Eliminates clutter. For locker rooms, lounges and pro shops. Golftile is 1/2 inch thick rubber tile. Exclusive interlocking design makes it easy to install over wood or concrete, without mastic. Attractive marbleized colors. Guaranteed 5 years prorata. Write for Free Sample.

MITCHELL DIVISION
MARTINDALE ENTERPRISES

2130 San Fernando Road, Los Angeles, Calif. 90065, Dept. G768

For more information circle number 257 on card