satisfactory green color in warm-turfgrasses so far shows that the
to reduce the this principle be used to maintain
ter applications of Non cool-season
putting green management.
the inventor's claims. This could
thatch; 4) closer smoother cut with
cent of all clippings. Repeated trials
inventor, collects 40 per cent more
organization of their facilities. The smooth,
efficient operation of a golf course
requires organized teamwork
wherein all members of the team
are constantly informed of opera-
tional procedures.

New Inventions
The other night there came an un-
expected phone call from an own-
er-operator-superintendent who
was full of his new invention. A
new design has been created for
a grass catcher on power greens
mowers which, according to the
inventor, collects 40 per cent more
clippings than conventional catch-
ers and gathers better than 95 per
cent of all clippings. Repeated trials
on his Penncross greens indicates
1) less disease; 2) less fungicides
required; 3) reduced tendency to
thatch; 4) closer smoother cut with
improved putting qualities; 5) less
Poa annua by virtue of virtually all
seed heads being collected. Plans
are in progress officially to check
the inventor's claims. This could
be a significant breakthrough in
putting green management.

Q.—The work of Schmidt and
Blaser in Virginia with fall and win-
ter applications of N on cool-season
turfgrasses so far shows that the
turf is greener through the winter
but with no noticeable increase in
diseases or other ill effects. Could
this principle be used to maintain
satisfactory green color in warm-
season grasses so as to reduce the
necessity of overseeding?
(Alabama)

A.—Your question is intriguing
and has been asked several times
in discussion groups. No satisfac-
tory answer can be given right now
but there are indications that, to a
degree, fall and winter treatments
with N may replace overseeding
with cool season grasses. Consider-
able work on this is in progress.

Q.—Some short-term research re-
ports show that recovery of N is
quite different from solubles as
compared to ureaforms; 51 per cent
vs. 19 per cent, for example. What
is a reasonable explanation for this
big difference? (Maryland)

A.—One answer is that, during
the short period covered by the
experiments, only part of the use-
able N in ureaform was converted
to nitrate nitrogen whereas all of the
soluble material had been con-
verted. Ureaform is made so that
most of the N is converted slowly
over many months and, if the ex-
periment were continued, there
would be total recovery comparable
to the soluble. In other experiments
different techniques showed a re-
cover of about 90 per cent for both
solubles and ureaforms. Short-
term trials are not designed to show
ureaforms to advantage; invariably
they favor the solubles.

Q.—I am a member of the Amer-
ican Society of Agronomy. In the
Agronomy Abstracts all measure-
ments are in metric terms. One pa-
paper says, "... both grasses were
favored by a mowing height of 5.08
cm rather than 2.54 cm." This
means that these grasses were fa-
vored by a two-inch cut rather
than a one-inch cut. Should we, as
superintendents, take steps to con-
vert English equivalents to metric?
(New Jersey)

A.—Since the metric system will
become the universal system, I
would urge the GCSAA and all
affiliated chapters to provide mem-
ers with a conversion chart to fa-
cilitate the changeover to metric
units. It will not be easy. It will
take time. It may be necessary for
extension services to give aid
through education talks. Turfgrass
councils and foundations can help,
too. Industry will be of great help
through field representatives. OK,
boys, on with the kilometers, hect-
areas, liters and kilograms.