Modern Lawn Mower Sharpener

You can sharpen the bedknife and the reel in the mower with a MODERN lawn mower sharpener or you can remove from the mower for separate sharpenings.

NO COMPLEX ADJUSTMENTS
Just raise the entire mower to the proper height. Bring the reel and bedknife into grinding position with a single hand lever . . . and sharpen.

YOU GET PRECISION RESULTS
The MODERN lawn mower sharpener precision grinds to tolerances of .001 or better, so there’s no need for “finish filing”.

A MODEL FOR ANY MOWER
MODERN lawn mower sharpeners are available in two sizes. One handles mowers up to 36 inches; the other is capable of sharpening blades up to 53 inches wide. With the optional Rotary Blade Holder, either model will sharpen and balance rotary blades, too.

SEND FOR FREE LITERATURE AND PRICES
Foley Manufacturing Company
1087-5 N. E. 5th St., Ringer Building
Minneapolis, Minn. 55418
For more information circle number 1895 on card

Texas Turfgrass Field day

Dr. George McBee and his associates—including Drs. Marvin Ferguson, E. C. Potts and Holt—were speakers at the Texas Turfgrass Association’s 1965 summer field day. Summary notes indicate that the meeting provided much useful information for those interested in golf course maintenance:

Height of mowing studies—Texturf I F is being mowed at four heights: \(\frac{1}{4}, 1, 1\frac{1}{2} \) and 2 inches. Initially the more desirable heights suitable for general turf use appear to be between \(\frac{1}{4} \) and 1 inch. These studies will be continued to determine later effects on the grass. The test is replicated and mowed with a reel type mower.

Turfgrass introductions—A number of Bermuda, Zoysia and St. Augustinegrass introductions are being observed. Some 61 new introductions of Bermuda and Zoysia grasses were planted this year. These came from countries such as Ceylon, Rhodesia, Okinawa, Zanzibar, South Africa and locations in the United States. They represent quite a range of the different types of Bermudagrasses. Performance of several of the St. Augustinegrass introductions was also observed in one of the older nurseries. Plants from both areas are being evaluated for possible use in the turf area.

Shade and variety experiments—The turfgrasses, No-Mow, Tifway, T-135 (bermuda), St. Augustine and Bahiagrass are being evaluated under three levels of light intensity. These approximate full sunlight, about 30 per cent of full sunlight and less than 20% of full sunlight. The results for reduced light are producing some “striking” responses, particularly in the No-Mow.

Shade and fertilizer experiments—Texturf-10 and No-Mow are being evaluated under varying levels of light intensity and variations in the fertilized elements, ni-
trogen and magnesium. The light treatments are certainly having an effect, but it is too early to evaluate fertilizer effects.

Tifdwarf and Tifgreen—Observations were made of the Tifdwarf and Tifgreen plantings. Early indications of the Tifdwarf show a distinct difference in color from Tifgreen. It has some different growth habits and preliminary indications are that it may not tolerate as much top dressing as Tifgreen.

St. Augustine Breeding and Selection Studies—Wayne Allen is continuing his work with St. Augustinegrass. A visit was made to the plots he is working with. Wayne gave an explanation of the cytological and genetical work being carried on with the various types of St. Augustinegrass. Also, extensive screening work is underway in an effort to select strains showing resistance to Brownpatch disease.

Turf heating—The area was visited where the turf heating experiments are being conducted. Results of last year's trials have been published in Progress Report 2360. Copies of this are available and may be obtained by writing the Agricultural Information Office, of Texas A&M University.

The new turf analytical laboratory was also visited during the tour. In connection with this, the soil studies being conducted by Cecil Brooks were observed. He is running studies on various soil mixtures for turf and the resultant effects on gas relations in the soil. The particular gases being measured are oxygen and carbon dioxide.

Time permitted a stop at only one of the herbicide trials. The one visited was for control of Dallisgrass in a Bermuda fairway. Results were noted for varying rates of DSMA, AMA, CAMA, and cacydolic acid. These were applied both with and without a wetting agent. The trials this year demonstrated the wetting agent to have a beneficial effect.

The afternoon session was spent in the Memorial Student Center reviewing results of turf research previously conducted and not shown on the tour. The outline, with speakers, follows: A. Studies with various types of golf shoes on turf—Dr. Ferguson; B. First year results on turf heating experiments—Bill McCune; C. Results of miscellaneous turf experiments—Dr. McBee; D. St. Augustinegrass studies—Wayne Allen; E. Results of preemerge herbicide experiments with turf—Dickie Duble; F. Fertilizer studies on St. Augustine grass. Shade studies on turf—Dr. Holt.