Looking for Bermuda That Should Stand Up?
Maybe Tufcote Is Answer

Much has been said and written about the loss of Bermuda turf, particularly where it is used during the dormant season. U-3 was lost on tees and fairways over wide areas in spring, 1963. Common Bermuda suffered a severe setback especially in the transition zone. Some relief was found where play was limited and where turf could be cut high for protection.

Recently I examined badly-abused athletic fields with Bob Thornton from S.C.S. Plant Materials Center, Beltsville, Md. Bob was one of the developers of a new Bermuda selection from South Africa which was first called Tuffy, and now has been christened Tufcote.

Three Test Sites
In checking on survival of Bermuda-grass under continuous heavy play even while dormant, we examined three test plantings that were made in the spring of 1962 on the field at Byrd Stadium at the University of Maryland. The three test sites chosen were all on the 50-yard line: one under the home bench, one under the visitors' bench, and one in the center of the field. The main field had been established in common Bermuda, sodded. The test areas were subjected to full use soon after sprigging.

In the spring of 1963 there was no loss of grass in spite of winter play, plus lacrosse in early spring on still-dormant grass. Summer, 1963, was a drought year, marked by "disaster areas" where farmers had no cattle feed. Tufcote showed distress after 50 rainless days but it did not turn brown. It bounced back with the first rain. Our examination on April 16, 1964, showed perfect survival, with shoots just starting to break from green stems and healthy white rhizomes. Common Bermuda "turf" adjacent to Tufcote could be classed as a "disaster" because there was no turf. Tufcote was worn almost down to the soil but it still showed a solid cover.

Worthy of A Chance
If Tufcote Bermuda can take the brutal punishment of year-round play on golf course tees as it has at Byrd Stadium, then every supt. who would like to have Bermuda tees that will tolerate continuous play should plant a nursery sufficient to sod problem tees. This grass deserves to be given the chance to prove itself on tees as it has under athletic field play.

To have top-quality turf we first must have a grass that will survive. Later we can apply techniques that enhance color, texture, density, cushion, freedom from diseases and weeds, and other attributes. From our observations there seems to be no question about the ability of Tufcote to recover from injuries because, frankly, we couldn't find any injuries such as cleat divots.

Information Available
With adequate literature to describe Tufcote Bermuda we need not use this space except to say that information on the grass and its availability may be had by writing to:
Maryland Grass Growers Cooperative
Dr. Mark Welch
Secretary, Maryland
Soil Acidity — pH — Soils that show a pH value of 7.0 are said to be neutral. A pH value of 6.0 indicates a soil that is 10 times more acid than 7.0. Similarly, a pH value of 8.0 shows 10 times greater alkalinity than pH 7.0. Most good agricultural soils are maintained between pH 6.0 and 7.0 (with exceptions).

The term pH refers to the logarithm of the reciprocal of the Hydrogenion concentration. This cumbersome technical term, reduced to “pH,” avoids the need to use awkward statements like: “... the H-ion concentration is 0.000,000,1 gram per liter.”

pH refers to active soil acidity, not to total acidity. pH values do not represent figures that can be used to calculate the amount of lime that is needed.

Acidity develops as hydrogen ions increase. Water, H₂O, can also be written H OH. Water splits into H⁺ ions and OH⁻ ions. Hydrogen ions develop acidity as they take the place of basic (alkaline) ions (Ca⁺⁺, Mg⁺⁺, K⁺) on the negatively charged soil particles. Soil is a balanced magnetic system with all the soil particles negatively charged.

When lime is applied the positively-charged Calcium (Ca⁺⁺) ions replace the H⁺ ions on the surface of the clay minerals. This is called Base Exchange. As the plants use the Ca⁺⁺ ions (and others such as Mg⁺⁺, K⁺) their places are again taken by H⁺ions and once again the soil acidity becomes stronger.

In 1856, Thaer developed litmus paper which changes color in the presence of acidity. Many other methods have been developed, among them the zinc sulfate-calcium chloride boiling technique where liberated hydrogen sulfide blackens a paper treated with lead acetate roughly in relation to the degree of acidity. In 1935, I used a pocket kit developed by Hellige — Truog where color changes approximately indicate pH values. Newer methods of great sensitivity now measure pH values to three decimal places.

Students of soil chemistry may read for further detail:
Yearbook of Agriculture 1957 — pp. 72-79.

Soil Acidity and its correction deserves serious, continuing study.

Yes, the name of the Post Office is “Secretary.”
NOTE: This is not a blanket endorsement of Tufcote Bermuda. This evaluation has been presented to encourage wide practical testing under continuous play. The performance of this grass merits consideration by all who use warm-season grasses on tees.

Fertilizer Framework
Q. “I am using three different nitrogen fertilizers on my course. Their analyses are 21-0-0, 5.5-4-0, and 38-0-0. I know that the first figure is the nitrogen, but why is it so low? Why can’t I have 100-0-0? What is the rest of the material — filler?” (West Virginia)

A. Your question is typical of many we receive. Naturally, you want to get the most for your money.

There is no “filler” in these fertilizers. Take 21-0-0 for example. The chemical formula is (NH₄)₂SO₄, the well-known ammonium sulfate. Based on molecular weights the N portion of the molecule is 21 per cent of the total. The hydrogen, sulfur and oxygen are essential parts of the

(Continued on page 118)