For Car Path Surfaces

Pecan Paths
Sludge Paths
Oyster Paths

By O. J. NOER

Paths for golf cars are becoming more important each year, particularly in concentrated traffic areas. They are being installed especially between and around greens and tees. There comes a time when water and fertilizer cannot grow grass faster than it is destroyed by car wear.

Blacktop has been the most popular cover on the paths because of its lasting qualities. Although expensive, it makes a fine surface for cars, but not for the pedestrian golfer. He wears a path in the turf alongside the blacktop because walking on it is unpleasant underfoot with spiked shoes.

Other Materials Used

Other materials have been used, mostly to reduce the cost of installation. Oyster shells are popular where they are abundant. The shells are put down intact and rolled to produce a level surface. This crushes the shells and makes a very serviceable path. Sludge from rock plants in south Florida is used in the same way. Both are very much cheaper than blacktop.

There are excellent car paths at Old Warson in St. Louis. They consist of pecan shells. The idea for their use came from Oscar Bowman, the supt. A club member markets pecan meats on a large scale. The nuts are brought into St. Louis and cracked in his plant. He has been happy to give Bowman the waste shells.

Walking Is Easy

The paths consist of a 4 to 5 inch layer of pecan shells. Walking on these paths is easy because surfaces are resilient. The shells support the cars without marking up the tires. The oil in the shells seem to hold them in place. There has been almost no decay. The only evidence of this is in the subsurface. There the shells are dark brown to black in color.

Courses in the south, and in parts of
California, may find the use of nut shells a very fine product for car paths. Walnut and almond shells should do just as well as pecan shells.

Discuss Soil Heating at Purdue Conference

Nearly 600 persons attended the 27th Midwest Regional turf conference Mar. 2-4 at Purdue University. This is the fifth consecutive year that attendance was near the 600 mark.

Plant physiology received major attention at the conference. Talks given by Dr. M. R. Teel, director, American Farm Research Association; Prof. A. C. Leopold, Department of Horticulture, Purdue; J. B. Beard, Department of Plant Science, Michigan State University; and J. M. Latham of the Milwaukee Sewerage Commission, touched on this subject.

Thatch control in various turf areas occupied a half-day session. Equipment, grass characteristics, the effect of wetting agents and the response to fertilizers were discussed.

H. B. Musser, Prof. Emeritus, Penn State University, and executive director of the Pennsylvania Turfgrass Council presented a key talk: “Nitrogen — Yesterday and Today.” He stressed the value of having limited quantities of available nitrogen present at all times for grass utilization.

Use Electric Cable

Soil warming for turf areas (in which an electric cable is used) received first-time attention at any turf conference in the U.S. when it was discussed at Purdue. Three years of work by W. H. Daniel, Purdue turf researcher and John Barrett of the Ag Engineering dept. at Purdue University show that soils can be kept thawed with low heat. It was also explained that with high heat, grass growth can be promoted through the winter.

All of the Midwest talks are summarized in a proceedings booklet which will be available within two months. Persons not attending the conference may secure copies for $1.00 from W. H. Daniel, executive secretary, M.R.T.F., Purdue University, Lafayette, Indiana.