Growing Turf
the Hard Way
Second in a series by TOM MASCARO

When a golfer misses a putt anything can happen!!!

1. Hydrated lime alone stopped disease and grass had recovered about 50 per cent.
2. Hydrated lime plus 2 lbs. per 1,000 sq. ft. of powdered nitrogen material stopped disease and grass had recovered about 75 per cent.
3. Control (check) plots steadily deteriorated under continued 95+ temperatures.

Start to Collect Clippings
One complaint was that grass wouldn’t grow — no clippings. Two days after the lime-plus treatments, mower baskets once more started filling.

Too simple? Perhaps. But let’s look at what seemed to take place. The hot-humid microclime was highly favorable to the fungi that were operating to make the grass “melt” or “wear out.” The light spray of hydrated lime, lightly rinsed in, caused a “flash” change in the microclimate to a high of pH 9.5 or thereabouts. (No actual measurements were taken here — this is factual information from previous research.)

Fungi wither at this high pH range and can not survive. Necessary bacteria are encouraged once more and effective turfgrass sanitation is achieved. The small addition of nitrogen added further stimulus to the bacteria (carbon and nitrogen). Grass started to grow and recover from the disease(s), even with continued unfavorable growing conditions.

Where inorganic mercury materials had been used for diseases, grass growth was checked severely and recovery was slow.

Sanitation in turfgrass may be furthered by several procedures, not the least of which is the timely and judicious use of lime. Let not the reader be confused by soil tests which read “pH 7.0” or “pH 7.4” It is possible for the pH in the microclimate to be in the acid range and thus highly favorable to fungus diseases, even though the soil reaction below is neutral to alkaline (favorable).

This department welcomes letters pro and con on experiences in sanitation with lime and other methods and materials. The concept of turfgrass sanitation deserves thorough study.

A Black Algae Problem
Q. Each fall when the rains come some of our greens are severely affected by black algae. Is there a cure-all that would stop this when the greens get too much water?

We have a thatch problem but the turf is

(Continued on page 76)
ONE source for ALL your needs

more $$$ for you in WATERS FAIRWAYS by Miller

DESIGN
We furnish complete plans and specifications.

INSTALLATION
Complete guaranteed installation or coop-installation whereby we furnish materials and supervision, you provide labor.

EXPERIENCE
Miller designed systems were installed in over 35 miles of fairways in a single season.

A. J. MILLER, INC.
"Midwest's Largest Underground Irrigation Contractor"
1320 N. CAMPBELL RD. ROYAL OAK, MICHIGAN

Grau's Questions and Answers
(Continued from page 46)

healthy and thick. There are no thin spots, yet the algae comes year in, year out. I suspect that the drainage problem and the thatch make conditions ideal for algae. It always forms just where the water collects before running off the green.

We use a fertilizer recommended by an agronomist. Some say this is why we have algae so bad but I’ve seen algae in the fairways where there is too much water and no fertilizer. It is even in dry places where the water has laid for a day or two and then dried up.

A. Poor drainage and thatch certainly will help aggravate the algae problem. Correcting the drainage is a major problem which should be undertaken after consultation with a specialist who can study the situation.

Thatch can be reduced mechanically with any of the several excellent machines on the market. But reduce it gradually and adequately fertilize to maintain vigorous turf and good playing conditions. Soil cultivation is essential to provide better aeration so that bacteria can be encouraged to reduce the thatch.

You do not mention the pH value of the soil but it is well known that periodic applications of ground limestone greatly encourages decomposition of thatch. Two applications a year at 25 lbs. to 1,000 sq. ft. each time can be a
Here's all you need for mower care!

SIMPLEX 150 PORTABLE LAPPING MACHINE reconditions any hand, power or gang reel-type mower with lapping compound. Keeps mowers in top condition between sharpening. Couples to either side of mower (gang mowers need not be unhitched), 30 lbs. GE ½ hp. motor with reversing action for quiet, dependable operation.

IDEAL CLEANING STAND is perfect for cleaning mowers, motors, power tools— almost anything. Recirculates cleaning solvent until it becomes unusable. Extra-large sink concentrates all cleaning, keeps shop tidy and minimizes fire hazard. Special aerating nozzle pours steady stream of solvent without spattering. Meets all insurance requirements.

Write for Free Catalog Today!

THE FATE-ROOT-HEATH COMPANY
Dept. G-9, Plymouth, Ohio

great help. The soil itself quite possibly could be neutral but the thatch creates acid conditions which must be corrected.

When algae appears, it is a good plan to dust hydrated lime on the greens. Two pounds to 1,000 sq. ft. will do a good job of checking algae, especially if it can be applied and allowed to lie overnight as a dust without being wetted by rain or irrigation.

Fall Renovation to Improve Fairways

Q. Enclosed please find soil report of our fairways. The course is two years old and is laid out on dairy and crop farmland. The fairways are in poor condition and we want to start improving them. I have talked to several superintendents and fertilizer people, but no one can explain "facultative anaerobes" mentioned in the report. Neither does the report mention lime even though the pH ranges from 5.1 to 6.1. If you recommend lime, tell me how much, what kind and the best time to apply. (New York)

A. The soil test report is difficult to interpret. My analysis is that you need lime and nitrogen, no P or K until later soil tests show the need. In early fall cultivate the fairways thoroughly, then apply one ton per acre of dolomitic ground limestone. At the same time apply 150 pounds of actual nitrogen to the acre (4 lbs./M²). By cultivating well, the nitrogen material will go into the soil where, if it is a soluble, it will minimize burning. If it is an insoluble, it comes in contact with soil bacteria which will start releasing the N.

None of my soils books mention "facultative"