Attitude on Lime Application Is Distressingly Casual

Lime is important to turfgrass in humid, high-rainfall areas where soils tend to become increasingly acid. In arid regions where evapo-transpiration exceeds rainfall, lime accumulates in the surface to the extent that measures often must be taken to counteract the excess lime and other salts.

Where lime is needed, often it is neglected with damaging effects on soil microorganisms, on fertility relationships and, consequently, on turfgrasses. Applications of lime seldom produce dramatic effects with the result that there is a distressingly casual attitude on the subject.

Old-time “green keepers” demonstrated their awareness of the value of lime when they built their compost piles of alternate layers of sod, peat, manure, lime and soil.

Historical turfgrass literature is liberally sprinkled with items on the use of lime. Here and there we find that agricultural ground limestone on half a fairway had something to do with producing nearly disease-free turf when an attack of dollar-spot occurred. One could cite many such instances.

Two Important Functions

Louis N. Wise in “The Lawn Book” (W. R. Thompson, State College, Miss.) calls attention to two important functions of lime: (1) it supplies calcium and magnesium, both essential plant nutrients; and (2) it influences soil reaction, reduces acidity and thus affects the availability and utilization of other nutrients.

Wise goes on to say that lime improves the availability of phosphorus and reduces toxic elements. It encourages soil microorganisms and thus discourages thatch formation. Lime improves soil structures, stimulates root development and improves resistance to certain fungus diseases such as dollar-spot and brown-patch. Drought tolerance is increased.

Check on Disease

Hydrated lime (essentially calcium hydroxide) is a valued member of the lime family for turf application. Many supts. maintain a stock of hydrated lime at all times and use it weekly during the summer. Light applications (1 or 2 lbs. to 1,000 sq. ft.) to greens in late evening, dusted on, allowed to lie on the grass until it is rinsed the next morning, check diseases and algae and renew turf vigor. Upon touching the surfaces of leaves and soil there is a sudden and dramatic rise in pH above the point where fungi can live. The net result is greater freedom from disease and an accrual of other benefits previously described.

Note: Carpetgrass and centipedegrass grow best at low pH ranges (4.5 to 5.5). Supts. are urged to seek out publications on lime from state experiment stations and elsewhere in order to become more familiar with the benefits to be derived from its use.

Readers of the Agronomy Journal may have noted a paper entitled “Trace Elements in Agricultural Limestones of the U.S.” by P. Chichilo and Colin W. Whittaker, Vol. 53: 139-144, 1961, a contribution from the Soil and Water Conservation Research Div., ARS, U.S.D.A., Beltsville, Maryland. The findings of these researchers and their co-workers point up some extremely interesting and valuable information. One sentence in the synopsis deserves direct quotation:

“At normal liming rates many limestones contribute significant amounts of (Continued on page 83)
Grau: Take New Look at Lime
(Continued from page 48)
certain trace elements and a few limes-
stones contain amounts sufficient for cor-
rection of deficiencies”.

Beneficial Side Effects
The whole subject of trace elements rapidly is coming in for well-deserved at-
tention where there is heavy crop re-
moval. Putting greens qualify in this
category. This new information on trace
elements in limestone gives us a new
concept of the beneficial side effects of
lime.

Most of the samples studied came from
the eastern half of the U.S. (Central Neb.
through central Tex. eastward). Fla. rock
averaged high in fluorine and phosphorus;
Neb. material was high in zinc, vanadium
and molybdenum; Kan. limestone aver-
aged high in aluminum, cobalt, sodium
and copper; Minn. material yielded potas-
sium and iron; and sulfur was found in
Ky. limestone.

Wide variation in analyses occurred,
leading authorities to suggest that a
knowledge of the composition of agricul-
tural limestones could lead to a more
advantageous selection of materials con-
taining quantities of trace elements de-
sired.

Space limits further discussion of the
subject here. The topic well could be dis-
cussed further at local meetings where
experiment station personnel are invited
to participate. The research reported here
further emphasizes the value of lime.
Don’t sell lime short.

Lime for Golf Courses
Q. Our firm manufactures agricultural lime-
stone, used to neutralize the acid in the soil.
Attached is an analysis sheet on our pulverized
limestone. You will note it is a high magnesium

The research reported here
further emphasizes the value of lime.
Don’t sell lime short.

Lime for Golf Courses
Q. Our firm manufactures agricultural lime-
stone, used to neutralize the acid in the soil.
Attached is an analysis sheet on our pulverized
limestone. You will note it is a high magnesium

limestone which gives it a high neutralizing
power of 108. In addition, the limestone also
contains calcium and it is ground very fine in
that it will pass 75 per cent through a 100
mesh screen.

Due to the high neutralizing power and
fineness, our limestone does provide rapid neu-
tralization of soil acid. We have quite a bit
of information on the use of limestone in agri-
culture, but very little on its use on golf courses.
We have sold some materials to courses in Ohio
and would like to broaden our market. But we
feel we should have some information as to
whether or not limestone should be included in
a course fertilization program.

Agronomists tell us that a pH level of 6.5
should be the goal for the farmer. While this
is true for agricultural crops it might not be
true for grass. Also, a supt. will use one type
of grass on greens and possibly another on fair-
ways. What is the reaction of the various types of grass to a sour or alkaline soil? Here is another question: What would the proper pH level be for various types of grass?

We know that there are different types of soils in various sections of the country and that a farmer or supt. would actually have to make a test of the soil to determine the pH level. This would be the basis for limestone application. We would only be interested in contacting golf courses in Ind., Ohio and Mich., as we feel this is our immediate marketing area. (Ohio)

A. Lime neutralizes acidity but more important it provides a rich source of calcium and magnesium, critical nutrients for bacteria and plants. Most turfgrasses would grow satisfactorily in an acid soil if they had a source of available Ca and Mg. Most acid soils render unavailable the basic elements by forming insoluble iron and aluminum compounds. The practice of using dolomitic limestone is highly favored on most turfgrass areas where soil acidity tends to develop.

Grass is an agricultural crop. The pH range of 6.5 to 7.0 is known to be most favorable to beneficial soil organisms and to most effective release of plant nutrients. This principle covers farms and turfgrass areas. Ranges above pH 7.0 are not necessarily detrimental to turf. Some of the best turf grows well at pH 8.0 to 8.5 in alkaline desert areas. Thus it can be seen that there is little danger of "over-liming" when dolomitic limestone is used.

Bentgrasses and fescues can tolerate acid soils but they do better when the acidity level nears the neutral point (pH 7.0). Bluegrasses, Bermuda and zoysia perform better at or near the neutral point. A certain amount of acidity is very desirable for helping to dissolve minerals and to make them available to plants.

Periodic soil tests have been advocated for turfgrass areas as well as for farms. Several fertilizer companies that make soil tests for customers actually "sell" as much lime as fertilizer. It would be very helpful to have a lime company assist in the educational work in the testing of soil samples and in making sound agronomic recommendations. To the best of our knowledge, your company is the first lime outfit to come forward with this kind of positive thinking and planning.

Record Entry for Amateur

A record 2,019 players submitted entries in the 1961 National Amateur which will be played at Pebble Beach (Calif.) GC, Sept. 11-16. This exceeded the 1960 total by 282. The Pebble Beach field will consist of 200 players who have survived qualifying rounds or are exempt from qualifying. Deane R. Beman, Arlington, Va., is defending champion.

Tell Them You Saw the Ad in GOLFDOM