Here’s Course Shelter That Is Termite-Proof

By W. Mack Angas
U. S. Navy Yd., Charleston, S. C.

The problem of building satisfactory shelters for golf courses has been complicated recently, particularly on the Eastern seaboard by the prevalence of termites. The shelter illustrated in the accompanying drawing and photograph, having no wood in contact with the ground, is not subject to attack by subterranean termites. The roof is amply large to give shelter from the sun or a passing shower; in fact it is so large that it would look out of proportion were it not painted green and white in stripes to simulate canvas, a bit of camouflage that effectively masks the shelter’s rugged construction.

The drawing and photograph show the construction of the shelter in sufficient detail to permit its construction by anyone familiar with such work. The building of such shelters should be well within the capacity of the maintenance force of larger clubs.

Both seat and roof of shelters in use on course at the U. S. Navy Yard, Charleston, S. C., are supported on a pair of reinforced posts. The roof is of wood, painted to simulate a canvas awning.
If a club wanted to make a number of the shelters and did not have men in its maintenance crew capable of turning out the concrete posts, it should be possible to have them made at a reasonable price by any local maker of concrete specialties.

Both seat and shelter are supported on pre-cast reinforced concrete posts or columns. Plain concrete is used to backfill around the posts after they have been set in holes dug as small as ground conditions and available tools will permit.

Do not use earth to backfill around the posts, as it cannot be tamped tightly enough to keep them from shaking in a high wind. This is not theory—I have tried it. If the tongues and grooves of the top sheathing are liberally smeared with thick white lead and linseed oil before fitting the boards together the top will be sufficiently water tight without requiring a roof covering of canvas or fabric over the wood. Be sure to paint the top to simulate a canvas awning.

If the shelter were being constructed out of a termite zone, the uprights, of course, could be made of wood posts. For wood posts, which would have to be larger than concrete posts, I would suggest 8 in. by 8 in. at the ground, tapering to 6 in. by 6 in. at the tip, with, of course, minor changes in other dimensions of the roof framing to suit the increased dimension of the post. It must be remembered, however, that even in locations where termites are unknown, wood posts are subject to damage by dry rot. All in all, I believe that concrete posts, such as we have built at our courses at the Charleston (S. C.) Navy Yard, are much more preferable.

HOW TO BUILD A GREEN

By William Watson

In my opinion the two most important points in the construction of putting greens are: (1) to give greens a covering of 6 to 8 inches of good soil, and (2) to see that provision is made for surface drainage. Greens should be built so that they will be playable almost immediately after a heavy rain. No pools should ever appear on any well-made green.

Surface drainage can be secured, first by having a gentle slope from the back towards the front of the green, or from the right to the left side, and then by introducing irregular varieties of scarcely noticeable swales, which will also provide all the contouring the surface of a green usually requires. These swales are formed with the back of a rake as a finishing touch just before seeding.

With efficient surface drainage, no tile draining is required as the latter method demands too much sprinkling in dry weather. On level ground greens should be raised a few inches above the surrounding territory to allow for effective surface drainage. Wide grassy hollows will give adequate protection from washes if placed so that they divert any superfluous water from the surrounding of the green.

The most uninteresting green is one without definition. Mounds, slopes, grassy hollows, sand pits, all have their values in beautifying the setting of our greens and in giving them distinctive definition—

if artificially arranged without appearance of artificiality. Mounds should have wide bases; no slopes should be steep. Grassy hollows should be wide and all surrounding contours formed so they may be cut with the lawn mower.

A good rule is to stress the importance of fitting in all grading work to harmonize with the surrounding territory.