GOLF COURSE INDUSTRY

Golf Course Industry?

Address ________________

Date ________________

E-mail Address______________

Check off the reader service numbers that you're interested in and mail in this card. Or visit www.golfcourseindustry.com.

1. How Do You Want to Receive Your Subscription?
 - 1-Digital and Print
 - 2-Print Only
 - 3-Digital Only (No Print Copy Received)
 (a valid e-mail address is required for digital delivery)

2. What is your primary business at this location? (check one)
 - 1-Construction/Development
 - 2-Golf Course Builder
 - 3-Golf Course Developer
 - 4-Golf Course Management Company
 - 5-Golf Course Architect
 - 6-Golf Course Superintendent
 - 7-Tee Designer
 - 8-Other (please describe)

3. What best describes your title?
 - 1-Owner/President/CEO
 - 2-Golf Course Superintendent
 - 3-Golf Course Owner
 - 4-General Manager
 - 5-Facility Manager
 - 6-CGC Director
 - 7-Head Pro
 - 8-Other (please describe)

4. Number of Holes: (check one)
 - 1-9 Holes
 - 2-18 Holes
 - 3-27 Holes
 - 4-36 Holes
 - 5-Other (please describe)

5. Total Annual Maintenance Budget:
 (check one)
 - 1-Less than $50,000
 - 2-$50,000-$99,999
 - 3-$100,000-$249,999
 - 4-$250,000-$499,999
 - 5-$500,000-$749,999
 - 6-$750,000-$1,000,000
 - 7-$1,000,000+

6. Course Renovation Plans for the Next 12 Months
 - 1-Full Reconstruction
 - 2-Partial Reconstruction
 - 3-Greens
 - 4-Tees
 - 5-Fairways
 - 6-Irrigation System
 - 7-Total Course Acreage

7. If Only a Partial Reconstruction is Planned, Please Indicate the Number of Holes
 - 1-9 Holes
 - 2-18 Holes

8. What is the Name of the Architect Who Designed the Course?
 - 1-Bentgrass
 - 2-Poa annua
 - 3-Poa/Bentgrass mix
 - 4-Bermudagrass
 - 5-Paspalum
 - 6-Poa annua
 - 7-Other (please describe)

9. If Only a Partial Reconstruction is Planned, Please Indicate the Number of Holes
 - 1-9 Holes
 - 2-18 Holes

10. What is the name of the Resort Chain, Golf Course Management Company, or Municipal Course System?
 - 1-Resort Chain
 - 2-Golf Course Management Company
 - 3-Municipal Course System
 - 4-None of the above

11. What Year was the Course Built?
 - 1-1900s
 - 2-1910s
 - 3-1920s
 - 4-1930s
 - 5-1940s
 - 6-1950s
 - 7-1960s
 - 8-1970s
 - 9-1980s
 - 10-1990s
 - 11-2000s

12. In this course part of a
 - 1-Resort Chain
 - 2-Golf Course Management Company
 - 3-Municipal Course System
 - 4-None of the above

13. What is the name of the Resort Chain, Golf Course Management Company, or Municipal Course System?
 - 1-Resort Chain
 - 2-Golf Course Management Company
 - 3-Municipal Course System
 - 4-None of the above

14. What turf do you maintain on fairways?
 - 1-Bermudagrass
 - 2-Poa annua
 - 3-Poa/Bentgrass mix
 - 4-Bermudagrass
 - 5-Bermudagrass
 - 6-Ryegrass
 - 7-Other (please describe)

15. What turf do you maintain on greens?
 - 1-Bermudagrass
 - 2-Poa annua
 - 3-Poa/Bentgrass mix
 - 4-Bermudagrass
 - 5-Paspalum
 - 6-Other (please describe)

Please allow 6-8 weeks for delivery of first issue. Incomplete forms will not be processed. Publisher reserves the right to reject all non-qualified subscription requests.
For faster service text 330.629.4043
Visit our website golfcourseindustry.com

GOLF COURSE INDUSTRY
PO BOX 532
RICHFIELD, OH 44286-0532

GOLF COURSE INDUSTRY
PO BOX 2191
SKOKIE, IL 60076-7891
was a decent one, although it lacked an adequate practice facility, Hardy says. The only place to practice was a small, narrow parcel where players were restricted to using irons. The architects rerouted many holes, allowing the facility to accommodate a full-size driving range.

"Having a range is very important, particularly in a resort location," Hardy says. "Many resort guests love to just come hit balls for a few hours."

Finding enough additional course width and length, while squeezing in a full-sized practice facility, required 50 or more proposed routing plans, Hardy says. Developing a concept that yielded better golf in terms of length, width and linkage, while addressing the Army Corps of Engineers' environmental concerns, were also difficult tasks.

The development team was fortunate the Army Corps of Engineers' regional office is located in Galveston. The team checked each new set of proposed plans with the nearby government office. When the team submitted a formal proposal using the regulators' feedback, they were fairly certain it would be approved.

The sandy seaside location coupled with an ever-present wind, which generally blows from 10 to 20 miles per hour, made the site ideal for a links-style layout with jagged-edge bunkering surrounded by native grasses, reeds and fescues. These characteristics, coupled with the high dunes Jacobsen Hardy designed into the layout, are reminiscent of windswept Scottish and Irish links.

The greens are a bit more bold than the usual Jacobsen Hardy style but still are characterized as a links style.

"They're more undulating and have more contour than we usually put in, but they're still very playable," VanHoose says. "As for approach shots, we left an open entryway into every green to encourage bump-and-run play. And there's usually a bail-out area to help the higher handicap."

The design team did a fantastic job, especially within environmentally sensitive areas, Herz says. The team reversed the first five holes and changed the first six considerably. It tweaked holes seven through nine, significantly tweaked holes 10 through 16, and substantially changed holes 17 and 18.

"We could not have been happier with the final layout," Herz says.

THE CHOICE OF PASPALUM

The development team started designing the course in August 2006. Construction began in March 2007 and was completed in October 2007. The facility has been growing in through the fall, winter and spring months and is on schedule to open in June.

With the constant threat of hurricanes driving seawater onto the fairways and a city requirement to irrigate the course with effluent water, the problems involving salt build-up within the soil profile weren't about to vanish. Jacobsen Hardy opted to replace the existing Tifdwarf 419 and common Bermudagrass mix with salt-tolerant paspalum, with Sea Isle Supreme on the putting surfaces. Plans were to sprig the grass and sod 20 acres of sloped areas during the summer, but a complication arose when the sod farmer reported the sprigs and sod weren't going to be ready until September.

"We needed to start grassing in June and July, so we regrouped and hit upon a seeded variety of
paspalum called Sea Spray produced by Scotts," VanHoose says. "We used a hydroseeder and sprayed the entire course except the greens. It worked wonderfully, leaving a seamless transition between fairways and roughs. We double sprigged the putting surfaces with Sea Isle Supreme."

Developers believe this is the first golf course in the continental United States that, other than the greens, has been seeded completely with paspalum.

One of the ongoing maintenance issues golf

With a constant threat of hurricanes driving seawater onto the fairways and a city requirement to irrigate the course with effluent water, problems involving salt build-up within the soil profile aren’t going to vanish.

Consultant/Specifier, Pumping Station Producer, Owner/Superintendent

Finally a water filter they all agree on

ORI Series
Line Pressure Powered Filters
- For irrigation system protection
- 50-12,000 gpm

ORE Series
Electric Powered Filters
- For high dirt load
- 50-6,000 gpm

ORS Series
Pump Suction Strainer
- Fully automatic
- 100-6,300 gpm
- Heavy duty bearing

Case Study
Bodega Harbor Country Club recently replaced its three carbon steel Filtomat (now owned by Amiad) filters with all Stainless Steel construction Orival Filters

www.golfcourseindustry.com/readerservice - #56
course superintendent Steve Yarotsky will face is weed control. Being situated in an environmentally sensitive area, few products are available to control weeds, particularly the original common and coastal Bermudagrass that will inevitably try to reestablish itself.

"Steve is considering using just straight saltwater to control weeds," VanHoose says. Related to killing weeds, killing the common and coastal Bermudagrass for the paspalum to thrive is difficult.

“We'll figure that out as we go,” VanHoose says. "Using salt might be the best solution. It might knock back the paspalum somewhat but not kill it. It will kill the Bermudagrass. Steve can spray a high-salt solution or actually put salt granules on the turf.”

Seashore paspalum expert Ronnie Duncan is working on a program that will help control the return of Bermudagrass to paspalum playing surfaces.

“There's definitely a learning curve involved with paspalum,” Yarotsky says. Unexpectedly heavy rains caused by a brush with a major hurricane that dropped eight inches of precipitation in a single day, plus a wet-ter-than-normal year overall, resulted in a total precipitation that was 15 inches above average in 2007, Yarotsky says. The construction team used matting in the bunkers and other areas to prevent sand and seed from washing away.

Because the existing site was flat, cut-and-fills, new lakes and undulating greens were built to give the course more character. To complete the facelift, landscapers moved 400 existing palm trees throughout the course and added another 300 queen palms. Moody Gardens spent a total of $500,000 on landscaping.

A COMMUNITY ASSET

The $15.5-million complex breaks down like this: $10 million for the golf course, $2 million for renovating the clubhouse, $1.5 million for a steel maintenance building on an elevated location that will withstand winds of 140 miles per hour, and $2 million to expand an existing desalination plant that cleanses the city-generated effluent water piped from two miles away for use at Moody Gardens and the golf course even more. During the summer, the course will use as much as one million gallons of irrigation water daily.

The Moody Foundation's willingness to provide an enhanced community asset and absorb any potential losses means Galveston residents will continue to pay green fees of $25 to $30 while visitors will be charged $50 to $75. And, just as important, the natural environment will continue to thrive.

“The entire course, but particularly the back nine, is environmentally pristine,” Herz says. “Several environmentalists have toured it and loved it.”

IMPRESSIVE & AFFORDABLE!
WHAT SUPERINTENDENTS HAVE TO SAY...

Economical...
"Direct from the manufacturer meant we got the highest quality at the lowest price!"
Tim Myers - GCS
Piper Heath Golf Links • Milton ON

People will notice...
"Our customers immediately noticed the improvements...and loved it!"
Jim Phelps - GCS
Gateway Golf & Country Club
Fort Myers FL

Samples...
“TTGCS provided virtual samples of our markers... upon request they made our Mira Vista wedges in each color for our greens committee”
Stephen Byrne - GCS
Mira Vista Golf & C.C. • El Cerrito CA

Samples...
"TTGCS provided virtual samples of our markers... upon request they made our Mira Vista wedges in each color for our greens committee”
Stephen Byrne - GCS
Mira Vista Golf & C.C. • El Cerrito CA

Call TTGCS today...
and get a virtual sample proof at no charge!
1-800-360-9959 • www.ttgc.com

A Community Asset

The $15.5-million complex breaks down like this: $10 million for the golf course, $2 million for renovating the clubhouse, $1.5 million for a steel maintenance building on an elevated location that will withstand winds of 140 miles per hour, and $2 million to expand an existing desalination plant that cleanses the city-generated effluent water piped from two miles away for use at Moody Gardens and the golf course even more. During the summer, the course will use as much as one million gallons of irrigation water daily.

The Moody Foundation’s willingness to provide an enhanced community asset and absorb any potential losses means Galveston residents will continue to pay green fees of $25 to $30 while visitors will be charged $50 to $75. And, just as important, the natural environment will continue to thrive.

“The entire course, but particularly the back nine, is environmentally pristine,” Herz says. “Several environmentalists have toured it and loved it.”

IMPressive & AFFORDABLE!
What Superintendents Have tO say...

Economical...
"Direct from the manufacturer meant we got the highest quality at the lowest price!”
Tim Myers - GCS
Piper Heath Golf Links • Milton ON

People will notice...
"Our customers immediately noticed the improvements... and loved it!"
Jim Phelps - GCS
Gateway Golf & Country Club
Fort Myers FL

Samples...
"TTGCS provided virtual samples of our markers... upon request they made our Mira Vista wedges in each color for our greens committee”
Stephen Byrne - GCS
Mira Vista Golf & C.C. • El Cerrito CA

Call TTGCS today...
and get a virtual sample proof at no charge!
1-800-360-9959 • www.ttgc.com

A COMMUNITY ASSET

The $15.5-million complex breaks down like this: $10 million for the golf course, $2 million for renovating the clubhouse, $1.5 million for a steel maintenance building on an elevated location that will withstand winds of 140 miles per hour, and $2 million to expand an existing desalination plant that cleanses the city-generated effluent water piped from two miles away for use at Moody Gardens and the golf course even more. During the summer, the course will use as much as one million gallons of irrigation water daily.

The Moody Foundation's willingness to provide an enhanced community asset and absorb any potential losses means Galveston residents will continue to pay green fees of $25 to $30 while visitors will be charged $50 to $75. And, just as important, the natural environment will continue to thrive.

“The entire course, but particularly the back nine, is environmentally pristine,” Herz says. “Several environmentalists have toured it and loved it.”

TTG Custom Signage, industry price leader, manufacturer, has committed to making a $5 donation to your local Golf Association for every marker sold. "Growing the Game", designed to help support on-going programs that ensure the continued growth of golf within your region.

Growing the Game...
...from the ground up!
Keep in check
Quality control is paramount when conducting pesticide runoff experiments

Surface runoff is one of the largest loss mechanisms for pesticides applied to turfgrasses (Smith and Bridges, 1996; Lee et al., 2000). Considering the importance of turfgrass to urban environments and the need to protect water quality, there's an ongoing need to perform turf runoff experiments to assess the behaviors of new chemicals or products, refine best management practices and calibrate/validate runoff prediction models for turfgrass.

Field studies indicate surface runoff from creeping bentgrass (Carroll, 2007) and Bermudagrass (Massey, 2007) is scalable across a range of plot areas. Thus, there's solid scientific justification for using plot-scale experiments to study the surface runoff of turf chemicals.

Conceptually, conducting a turf runoff experiment is simple. A chemical is applied to grass, and runoff, generated by natural or simulated rainfall, is collected and analyzed for the chemical. In practice, a runoff study involves a number of steps that must be performed carefully to ensure scientifically valid, representative data are produced. Seemingly small oversights in study design or conduct might compromise data from a scientific or regulatory perspective.

The goal of the experiment is to assist researchers, and perhaps those charged with evaluating/interpreting runoff study designs/results, by highlighting certain quality control considerations important to the conduct of a plot-scale turf runoff experiment. The experiment isn't comprehensive, but it presents
quality control approaches that have proven helpful in studies conducted at Mississippi State University.

For a review of technical considerations important to the conduct of a runoff study, review Wauchope et al. (1995). The experiment phases addressed are:
- Study planning,
- Plot construction and maintenance,
- Rainfall simulator verification,
- Application monitoring, and
- Sample handling.

STUDY PLANNING
Quality control principle. A detailed study protocol that addresses all aspects of study conduct is critical to the success of any study. Moreover, an approved protocol is required for a study to be submitted to support pesticide registration. A well-designed protocol serves as an invaluable reference throughout a study as many construction and study conduct activities build on one another.

Basis of concern. There are certain study details that shouldn't be left to chance or addressed as an afterthought once the study is under way. Particular attention should be paid to methods used to control and account for water movement in test plots and methods used to account for pesticide application and rate in the turf system. Some pesticides present special considerations, such as those with a propensity to adsorb to plastic and other surfaces strongly (water solubility equals 1 milligram per liter at 25 Celcius), rapidly degraded (soil T_{1/2} equals two days), or those that are relatively volatile (vapor pressure greater than 10^-3 millimeters of mercury at 25 Celcius). Thus, the researcher must take into account the properties and environmental behavior of the pesticide during protocol development. Sample handling and storage practices also are critical and often compound-dependent.

Approach. A thorough literature review is an appropriate place to begin a study of this scale. Unfortunately, quality control programs aren't always explicitly reported in published works. Consultation with the chemical manufacturer, other researchers and the targeted end-user of the information generated by the study can help address important aspects of study design. In the end, attempting to account for as much of the rainwater and applied pesticide as possible is a good guiding practice in study design and conduct.

TURF PLOT CONSTRUCTION, MAINTENANCE
Quality control principle. The runoff plot should be constructed to capture no more and no less than the actual runoff occurring from the treated plot. Water external to the plot boarders shouldn't be allowed to run onto the treated plot just as the runoff collection apparatus must capture all surface runoff and not leak.

Basis of concern. If water external to the treated plot is allowed to run onto the plot, pesticide concentrations in runoff will be diluted. Runoff that completely bypasses or leaks from the runoff collection apparatus before measurement will reduce the total runoff volume and pesticide load measured during the study. Both of these scenarios won't accurately reflect the
Wherever you need disease control, you need DISARM®.

University trials prove that DISARM® Fungicide provides unsurpassed strobilurin disease control. And because it's priced at a more affordable cost per acre than competitive strobilurins, you can apply DISARM on fairways and greens throughout your entire golf course. Used alone or in combination with other non-strobilurin fungicides, DISARM controls all major turfgrass diseases, including brown patch, zoysia patch, summer patch, gray leaf spot, anthracnose and pythium. Plus, it is the only strobilurin labeled for control of light-to-moderate infestations of dollar spot. To learn more, contact Arysta LifeScience North America Support Services at 1-866-761-9397 or visit www.arystalifescience.us/disarm.

Always read and follow label directions. DISARM is a registered trademark of Arysta LifeScience North America Corporation. The "Protection From Tee To Cup" slogan and Fairway Pack are trademarks of Arysta LifeScience North America Corporation. The Arysta LifeScience logo is a registered trademark of Arysta LifeScience Corporation. © 2007 Arysta LifeScience North America Corporation. DSM-083
The actual amount of runoff that occurred.

Approach. To prevent extraneous water from entering the plot, the plot must be isolated hydrologically from the surrounding area using metal dykes (Wauchope et al., 1990), landscape timbers (Smith and Bridges 1996; Hong and Smith 1997) or flexible plastic discharge hoses filled with masonry sand (Cole et al., 1997). However, for multiple plots, it might be better to use permanent turf-covered soil berms because they are easy to maintain by mowing when less than two inches high.

Plot spacing also is important and dependent on overall experimental design and configuration of the spray equipment and rainfall simulator to be used. Wide plot spacing prevents overspray during pesticide application and rainfall simulation and allows movement of equipment between multiple plots. Knowledge of the distance of throw of the rainfall simulator is needed to determine appropriate plot spacing.

One of the most important considerations in plot construction and maintenance is the interface that exists between the down-slope edge of the plot and the runoff collection apparatus. This interface between the runoff diverter and turf is critical because it represents a potential point of loss for surface runoff. Wauchope et al. (1995) note construction of the diverter-turf interface requires creativity and skill. Several approaches might be used, but in each case, the system must ensure against runoff bypass and potential leaks.

At Mississippi State, we thought it was best to minimize the transition between the sod and diverter by minimizing the thickness of the diverter. Our diverter consisted of 20-gauge aluminum metal bent to a 140-degree angle. The diverter was designed so that it extended into the plot about two inches and into the runoff collection trough about three inches. The soil underneath the diverter was sieved, carefully leveled and tamped so no air space existed under the diverter. Next, the diverter was attached to a wooden box lining the collection trench using silicone sealtant and screws with rubber grommets. Before installing the diverter, sod close to the interface was removed using a sod cutter.

Once the diverter was installed, the original sod was placed so that it overlapped the diverter about one inch. The diverter-sod interface was allowed to heal for six to eight weeks before conducting runoff studies, the performance of the rainfall simulator must be verified.

Table:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Product</th>
<th>Percent Disease</th>
<th>Evaluation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pythium Blight</td>
<td>DISARM (0.18 fl oz) 14 Day</td>
<td>26%</td>
<td>8/24/2006</td>
</tr>
<tr>
<td>B. Clarke, Rutgers University; 2006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentgrass; Product/1,000 sq ft; Percent Disease: 26%; Evaluation Date: 8/24/2006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perennial Ryegrass; Product/1,000 sq ft; Percent Disease: 94%; Evaluation Date: 10/02/05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insignia® 20 WG (0.9 oz)</td>
<td>37%</td>
<td>10/07/2006</td>
<td></td>
</tr>
<tr>
<td>R. Latin, Purdue University; 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryegrass; Product/1,000 sq ft; Percent Disease: 54%; Evaluation Date: 10/22/05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insignia is a registered trademark of BASF. Vital is a registered trademark of Luxembourg Industries (Pamoi) Ltd. Heritage and Subdue MAXX are registered Trademarks of a Syngenta Group Company.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ON YOUR COURSE.

With GolfLinx all-in-one water management solution you take the daily guesswork out of your water management decisions. Now you can effectively and quickly monitor your water usage, drainage and irrigation efficiency. Our AquaSpy™ Turf Probes measure soil moisture content in two-inch increments down through the root zone and soil profile. GolfLinx also provides you with precise salinity and temperature measurements. When combined with our easy-to-use AquaSpy Viewer package you are provided a virtual x-ray of your soil profile, which is transmitted directly to your PC, PDA or Internet. Not only will you save time and money, GolfLinx will help you improve the quality and durability of your turf.

• Optimize water savings, up to 30% or more
• X-ray of soil profile helps eliminate over-watering
• Provides real-time data during Greens leaching
• Stronger and deeper rhizome systems
• Grow healthier turf with greater recoverability
• Reduce pumping and maintenance costs
• Fully sealed and maintenance-free probes built to last the life of your irrigation system

VISIT US ONLINE AT WWW.GOLFLINX.NET

RAINFALL APPLICATION RATE VERIFICATION

Quality control principle. The delivery rate and uniformity of the rainfall simulator must be verified under field conditions.

Basis of concern. Rainfall application rates significantly less or greater than the target rate and/or lacking in uniformity might cause nonrepresentative and/or highly variable results that complicate interpretation.

Approach. Before conducting runoff studies, the performance of the rainfall simulator must be verified. This is accomplished using a formal audit procedure (Wauchope et al., 1995). For example, Carroll (2005) used paper cups spaced on 12-inch centers. Plastic tarps placed over the entire plot area might be used to determine total rainfall delivery. This approach provides a visual assessment of uniformity but doesn’t yield a quantitative measure of rainfall uniformity.

The operating pressure of the simulator should be noted during audits and checked periodically during study conduct to ensure the system is operating properly. During runoff events, pan-type rain gauges should be used to record rainfall amounts and uniformity. Note that tall, narrow-top rain gauges might not measure rainfall accurately, causing the steep descent of the artificial raindrops.

PESTICIDE APPLICATION MONITORING

Quality control principle. One must know the amount of pesticide ap-