the unveiling of Westmoreland's new greens last spring. The scheduled reopening of the golf course was for June 16, but the greens were unresponsive as of June 13.

"I made chemical applications, but I didn't think it could be a fungus damaging the greens," Heery says.

Just to be safe, Heery sent test plugs to two labs for second and third opinions. The first lab found nothing, but the lab at the University of Rhode Island had a different take.

"They came back to me right away and said, 'Whoa! You have a test case for root rot pythium,'" Heery says. "This is down below, not like pythium blight on the surface. They said we needed to spray and five days later I'd see a dramatic improvement. Sure enough, they improved during those five days. On the surface, it looked like devastation - and there were some mighty worried people around here.

"It sounds ridiculous, but the root structure we had on these new greens was so good, it nearly came back to bite us," he adds. "When we made the initial application of Coban, with root structure..."
The subsurface air system consists of 6-inch main pipe down the middle of each green and a herringbone system of 4-inch tile off the main pipe on 10-foot centers. A loop system around the outside of the green connects the 4-inch pipe and the main pipe to another 4-inch pipe that encircles the green. Photo: Westmoreland Country Club

12 inches down, we couldn’t drench it in. The root structure was too established. But that proved to be our bread and butter to get the greens back. Soon, the disease stopped working, and they came right back.”

Heery says the putting surfaces were completely healthy by the first week of August, though he didn’t sleep much the previous seven weeks.

“This summer definitely took years off my life, but now the greens are acting the way they acted in April,” he says.

A TRUE MANIFOLD
The subsurface air system at Westmoreland is different than others. Instead of drain tile on 15-foot centers, Golf Creations and subcontractor Leibold Construction installed a 6-inch main pipe down the middle of each green and a herringbone system of 4-inch tile off the main pipe on 10-foot centers. A loop system around the outside of the green connects the 4-inch pipe and the main pipe to another 4-inch pipe that encircles the green.

“Normally on a USGA green, the tile lines are laid 15 feet apart, but on the Westmoreland project we laid these tile lines 10 feet apart and ran perimeter tile all the way around each green, too,” says Kevin Stieneke, operations manager for Golf Creations. “A normal green would take 600 feet of tile. We did 1,300 feet for each green. The more tile, the more spots
where the air is pushing up into the soil profile, and the more air the better."

What the construction team basically has done is create a true manifold that ties into the drainage to blow warm and cold air underneath the greens, Heery says.

"The ultimate would be to have the permanent heating and cooling units tied in underneath," he says. "But, right now, we are a percentage of the way there with the mobile units. If we run into trouble this year, we can evacuate water quickly or blow air in with those units. I've seen this work at Congressional Country Club. It has a lot of benefits. Black layer is almost nonexistent when you blow air underneath."

The mobile units can blow warmer, ambient air under the greens for 20 to 30 minutes during the winter to help melt ice on the greens. And, if and when the time comes to install permanent units, Golf Creations says the permanent machines could be retrofitted in as little as an hour apiece.

PIN LOCATIONS
For Arthur Hills/Steve Forrest & Associates, the main challenge was to retain the green contours while expanding the number of pin locations. Paul Granger of New Jersey-based Aqua Agronomic Solutions, which designed the irrigation system, used Light Detection and Ranging remote sensing technology to collect and store topographic information about all the greens. (National Oceanic and Atmospheric Administration and NASA scientists pioneered LiDAR technology to document topographic changes along shorelines.) Granger entered the information into a computer-aided design file. Hills/Forrest then used the information to redesign additional pin locations onto the greens and provided Golf Creations with the information it needed to retain the contours.

CERAMIC SOIL MIX
Heery was sold on the use of ceramic soil mix in greens construction by Paul R. Latshaw, who he worked for at Congressional, and Paul B. Latshaw, who he worked for at Merion Golf Club in Pennsylvania. Golf Creations rebuilt the soil profiles using a ceramic mix called Perma Pore instead of peat. The mix, tested in a nursery by Heery maintains at Westmoreland, is designed to hold more water in the profile during times of drought. It also can be sized to the same gradation as the greens sand.

"The uniformity of the ceramics is amazing," Heery says. "Some have used peat successfully, while others have told horror stories. When we engineered the growing medium, the members' big concern was that the rebuilt greens be receptive to shots. We ran this past every accrediting lab. We wanted something that would set up softer and let us create firmness through the root structure rather than sand. These greens are receptive. They will be firm, but hold shots."

With the ceramics, the greens percolate at just less than 30 inches per hour. Mills has consulted on several new courses and used ceramics in all of them, which was one of the reasons he was brought in as a consultant at Westmoreland.

"You have to change your thinking as a superintendent when using ceramics instead of peat," Heery says. "Ceramics absorb water and retain soluble nutrients. You use less water and nutrients than on a traditional green with peat."

NEW TECHNOLOGIES
The project's success was largely due to a team of experienced professionals who had a willingness to try new technologies and work together, Heery says.

"It was especially nice to be working on a project that featured such cutting-edge technologies," says Bob Lohmann, founder and principal of Lohmann Golf Designs, which is the parent company of Golf Creations. "It shows that we're trusted in the marketplace to do the job exactly right."

Peter Blais is a freelance writer based in North Yarmouth, Maine. He can be reached at pblais@maine.rr.com.

Ceramic soil mix was used in greens construction instead of peat. The mix is designed to hold more water in the profile during times of drought. Photo: Westmoreland Country Club.
One of my first jobs after accepting the superintendent position at Segregan-sett Country Club in Taunton Mass., was to sit down with my green chairman at the time, Chris Ryding, and figure out which pins/flagsticks the members wanted on the golf course. I had three full sets of completely different style pins and no idea which one they preferred.

Par Aide manufactured all three different style flagsticks, which are listed in the company’s catalog as:

- the half-inch solid regulation fiberglass flagstick;
- three-quarter-inch tapered tournament flagstick; and
- one-inch aluminum/fiberglass tournament flagstick.

Ryding and I agreed on the three-quarter-inch tapered tournament flagstick, which seemed to look better and would be more durable because...
To meet the needs of members, superintendent Rich Gagnon and assistant superintendent Tate Asselin tested three different flagsticks to determine how they affected ball bounce.

Photo: Segregansett Country Club

of its weight and thickness. We didn’t give it much more thought than that.

That is until a complaint rolled in from a member that changed our way of thinking a bit. The complaint was that we needed to get rid of the “metal” flagsticks because the ball bounces off them too hard and is less likely to fall into the hole. I was told we needed to go back to the half-inch, solid regulation fiberglass flagsticks.

I assured the chairman the flagsticks were made of fiberglass and the only metal component was the ferrule on the bottom and the screw threads on the tip, which hold the flag on. I was told that regardless of what the flagsticks were made of, fewer balls go in the hole with the flagsticks we were currently using.

A couple years passed. The same three-quarter-inch tapered tournament flagsticks were being used, but now I had a new chairman, Earl Dion. The old complaint had resurfaced with a new set of ears to listen, and I was asked if it was
Rich Gagnon needed data to back up his claims about flagsticks to help his debate with members. Photo: Segregansett Country Club

a legitimate complaint once again. It seemed that if all the flagsticks were eight-feet tall and had a half-inch-wide base made of fiberglass that it wouldn’t affect the ball dropping into the hole or kicking to the side. After hearing this complaint yet again, I figured I’d try to put the myth to rest – that the flagsticks we were using were reducing the chances of the ball dropping into the hole.

Segregansett has 20 members who have a USGA handicap index of 2 or lower, 12 members who qualified for the Massachusetts Amateur Championship in 2007 and two members who played in national USGA events last year. The members have the reputation of being one of the best playing memberships in the state. I wasn’t about to win any debate with any of them about what a ball does or doesn’t do when it hits a flagstick. That is unless I had data to back up what I said.

SET IT UP
To conduct this test, I used all three sets of pins. I set a regulation cup into a green mowed at one-eighth inch on a flat surface and set up a transit tripod several feet away from the cup. Then I cut a 10-foot section of PVC irrigation pipe, set it on the tripod and raised the entry point of the pipe two feet off the ground, with the exiting end of the pipe 14 inches from the hole resting on the green. All the flagsticks had flags on them, the ferrules were all the same, and the Par Aide cup was set at regulation depth.

Assistant superintendent Tate Asselin and I rolled 100 balls through the PVC pipe at each of the flagsticks. We removed a ball from the cup
Do you wish to receive/continue to receive a FREE subscription to Golf Course Industry?

☐ Yes ☐ No

Signature __________________________

Date ______________

Name _____________________________

Title _____________________________

Company __________________________

Address __________________________

City ____________________ State __ Zip________________

Phone ____________________________

Fax ______________________________

E-mail Address _______________________

GIE Media Inc will only use your email address to contact you with relevant industry or subscription information. If you do not want to receive email from trusted 3rd parties, please check here. ☐

What is the best way to contact you for future renewals?

☐ email ☐ fax ☐ telephone

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360

November 2007
After research, it turned out more balls were likely to fall into the hole after bouncing of the half-inch flagstick. Photo: Segregansett Country Club

Based on their individual characteristics, and the idea was a great one, but our final decision to use 100 random golf balls, not 100 of the same kind. This was based on one factor: I wanted to duplicate what is actually happening on the golf course when my membership hits the flagstick on a chip shot. What better way to test for this than having 100 random balls that were hit by the membership at one time, picked up by me after they were lost and eventually used in this experiment?

RESULTS THAT MATTER?

After 300 balls were sent through the pipe, the results were in. With the flagstick we were using (three-quarter-inch tapered), 67 percent of the balls fell into the cup. With the half-inch flagstick, 72 percent of the balls fell into the hole. The complaints were valid, but barely. At a 5-percent difference in the members' favor, it

every time one landed in it to make sure the balls leaning against the flagstick didn't have any effect on vibration or stability. We wanted to simulate a chip shot as it hits the flagstick but wanted to make sure all balls hit the flagstick dead-on at a normal pace to see how the ball reacted.

We understood that, in the real world, any perfect chip shot that just drops in the hole wouldn't be affected by which flagstick was in the cup and any ball skulled or off center wouldn't be impacted either. What we wanted to avoid was the ball traveling too fast, too slow or off center. The 10-foot pipe set up at two feet off the ground on one end and 14 inches from the hole on the other end seemed to be the perfect combination for simulating a direct hit at a medium pace.

As the flagstick test was under way, Asselin thought it would be a good idea to take the test to another level and use the exact same make of ball to assure consistency and accuracy. I'm sure some balls might react differently than others.
Even the smallest details on a golf course, such as flagsticks, are important to members of Segregansett Country Club. Photo: Segregansett Country Club

appeared that for every 20 chip shots that hit the flagstick dead-on, one more fell into the cup with the half-inch flagstick compared to the three-quarter-inch tapered flagstick. Although not a major difference, there still was a difference.

"If I hit the flagstick with 100 chip shots this year, I want the five birdies – there’s a difference!" Dion says. "If I go up against a good chipper in the club championship, I want the three-quarter-inch flagsticks in. Who wouldn’t?"

Most golfers would say there’s no difference which flagstick was in the cup. And, statistically, the 5-percent difference in our results would probably hold true for 100 coin tosses. But one flagstick had to win the race and the results would never turn out 50/50 anyway. There might not seem to be a difference between the half-inch and the three-quarter-inch flagsticks, but when the two pins were matched up against the one-inch flagstick, the results proved there can be a significant difference between flagsticks and the percentage of balls falling into the cup.

The biggest shock of all was that with the one-inch flagstick, no balls fell into the hole. That’s right, none. It’s hard to imagine there would be such a big difference, especially since the bottom 12 inches of all three flagsticks is exactly the same width (half-inch) and made of fiberglass.

WEIGHT IN
I took things a step further and wanted to see if weight had any effect on the results since the area that the ball was hitting was exactly the same on all the flagsticks. The three-quarter-inch flagstick was heavier than the half-inch one, but the one-inch flagstick was lighter than the three-quarter-inch flagstick. Weight, materials and width in the impact area all have no effect on the results.

Is 5-percent difference enough to change the flagsticks at Segregansett to the half-inch ones?

It’s still debatable, but I can assure you that after reading the results of our experiment you’ll never see the one-inch flagsticks in our cups again. That is, until my chairman goes up against a good chipper in the club championship. GCI

Rich Gagnon is the golf course superintendent at Segregansett Country Club in Taunton, Mass. He can be reached at sccturf@hotmail.com.

ORI Series
Line Pressure Powered Filters
- For irrigation system protection
- 50-12,000 gpm

ORS Series
Pump Suction Strainer
- Fully automatic
- 100-5,300 gpm
- Heavy duty bearing

ORE Series
Electric Powered Filters
- For high dirt load
- 50-6,000 gpm

ORS Series
Pump Suction Strainer
- Fully automatic
- 100-5,300 gpm
- Heavy duty bearing

Case Study
Bodega Harbor Country Club recently replaced its three carbon steel Filtomat (now owned by Amiad) filters with all Stainless Steel construction Orival Filters

International Irrigation Show Booth #1845
Golf Industry Show Booth #3437

www.golfcourseindustry.com/readerservice - #42

70 | NOVEMBER 2007 | www.golfcourseindustry.com