Technology permits lower, leaner and faster greens

By KEVIN J. ROSS, CGCS

There is no debating the fact that managing golf greens today has changed over the last 25 years. Today, greens management uses technology and years of experience to produce the finest conditioned greens surfaces ever. It wasn’t too many years ago, the 1970s, that we were cutting greens at 3/16 inch and producing speeds of seven feet on the Stimpmeter. Times have changed.

CONSTRUCTION

The greens that superintendents produce today are, in large part, a result of greens construction techniques that have been refined through the years to offer the utmost in soil physics. The USGA has done an excellent job in continually reviewing and improving their specifications for greens construction. Present specifications are based on scientific laboratory testing, which will ensure that, with proper construction, a green will perform for many years.

With technology, we have also improved the ability to match the proper sand particle sizes of a USGA spec green. Golf course material suppliers now have very sophisticated sand screening and mixing machines. These machines ensure the proper material will be produced and mixed for greens rootzones.

TURFGRASSES

Since the late 1950s, Penncross creeping bentgrass has dominated the bentgrass market. Even with the newer bentgrasses on the market, Penncross is still the world’s top-selling bentgrass, with some 750,000 pounds sold annually. While Penncross still dominates the market, the grass we now play on is one of the biggest changes in greens surfaces. The new “superbents” (As, Gs, L-93, SR119, etc.) offer finer texture, greater density, upright faces. The new “superbents” (As, Gs, L-93, SR119, etc.) offer finer texture, greater density, upright

UMass study determines pesticide exposure figures

By ANDREW OVERBECK

PROVIDENCE, R.I. — A University of Massachusetts researcher has completed the first phase of a golf course pesticide study that provides, for the first time, accurate exposure estimates for golfers. The research is significant because it will give the U.S. Environmental Protection Agency realistic human exposure data to use when reregistering pesticides under the Food Quality and Protection Act (FQPA).

At a presentation delivered during the New England Turfgrass Conference and Show here March 19, Dr. John Clark outlined the results of the three-year, $250,000 study. The work was sponsored by the USGA, the New England Turfgrass Foundation, the United States Department of Agriculture, Dow AgroSciences and Bayer. “The EPA didn’t ask us to do it [the study],” said Clark. “The driving issue is they are in the process of reregistering through FQPA and as the industry looks

Continued on page 12
LANSING, Mich. — In the course of researching his upcoming book on green speed and helping Crystal Downs Country Club superintendent Mike Morris identify his course's optimum green speed, Michigan State University turfgrass research specialist Thom Nikolai may have found the answer to end the constant debate over green speed.

"When the USGA perfected the Stimpmeter in the late 1970s they set up a chart for tournament play and named [the readings] fast, medium and slow," said Nikolai. "They should not have done that, because no one is going to say 'I want to play on the slow ones.' Whenever a golfer hears the speed they say they want to play something that fast. It is synonymous with wanting a faster car."

Instead, Nikolai argues, the chart should be changed from describing speed to describing the contour of the green. This would replace fast, medium and slow with flat, undulating and severely contoured.

"It would be better for all golfers on each individual course, it would be better for superintendents and it would be better for the turf," said Nikolai. "You can tell people that speeds are different from course to course, but people are not very good at communicating why speeds are different. It comes down to contours.

"What needs to be done is to find and evaluate the correct green speed for each particular course and that can be done very simply with the superintendent identifying a range by surveying members," he added. "This could be done over the course of a year. And the results would be a determined green speed range that is the best speed for each particular course."

Although more research is necessary, Nikolai hopes to develop a model that takes into account the topography of the green, making the fastest possible numbers less appealing.

"I think the majority of golfers would rather play on contoured greens as opposed to flat ones, thus fastest should not be perceived as the best to play on," he said.

Divot sand filler

Continued from page 8

mounted to a shelving unit and secured at the top for stability.

The following parts are needed to construct the tube filler:
• 1 piece of eight inch PVC Pipe, four to five feet long
• 1 eight inch by two inch PVC reducer
• 1 two inch by one inch FPT bushing
• 1 one inch threaded nipple
• 1 one inch brass ball valve
• 1 eight inch glue end cap (optional)

To assemble the unit, thread the nipple into the ball valve, then thread the nipple into the bushing. Then glue the bushing into the reducer, and attach it to the eight-inch pipe. The opposite end of the pipe is used to pour the divot mix into the device. You can, however, grind the outside diameter of the pipe so an eight-inch cap will fit over the pipe if needed.

Got a SUPERidea of your own? Email your ideas to editor Andrew Overbeck at aoverbeck@golfcoursenews.com. If your idea is selected for publication, we'll send you a Golf Course News golf shirt.

Game over, grubs. MACH 2 specialty insecticide is the proven season-long force against grubs — not to mention cutworms, sod webworms and armyworms. And now, it's available with a standard 2-lb. per acre a.i. rate for all grub species. That's more power for the same cost. With its wide application window, you can control grubs clear through the second instar — without the need for immediate irrigation. The competition can't make that claim. Fact is, nobody's better at putting insects two inches below six feet under, baby.