Junk food for turfgrass?
McCue serves up a batch

By MARK LESLIE

CASTLE ROCK, Colo. — The chef at the Country Club at Castle Pines may think superintendent Sean McCue is baking a batch of cookies with all the molasses he’s buying but, in fact, he’s heating up a meal that is producing healthy turfgrass and saving money.

For the past year McCue has been spraying his greens and fairways with a concoction of molasses and cane sugar, along with iron and a kelp product. “It’s our own roots mix, if you will,” McCue said. “It’s a quick carbohydrate source — basically a junk food for grass. It heats it up and gives it a quick flush.”

The effect is very noticeable and almost immediate. “You notice it on greens in particular,” McCue said. “The day before you spray, you might get a third of a basket of grass clippings. The next morning, after you spray, you get a full basket.”

Besides the quick flush, the application improves grass color and increases its rooting mass, he said.

“We use this mixture to help break the greens out of dormancy without using N [nitrogen],” McCue said. “We use TGR, a plant growth regulator, for post annual control in the fall. With TGR, you get a straw-colored discoloration in the spring.

“It’s a substitute for a roots product. You try to generate some growth without adding nitrogen.”

In 1996 McCue applied the molasses mixture every two weeks from April through late-September on this course which pushes through 25,000 rounds in a seven-month season.

His crew generally adds nitrogen in a separate application. Sticking to a philosophy of keeping things lean, last year McCue applied 1.7 pounds of nitrogen the entire growing season.

On the greens we put down .38 pounds of N last April 18, McCue said. “By supplementing with all these other sources of food, we were able to go without fertilizing again until July 29.”

He said his molasses mixture costs about one-half the price of over-the-counter roots products. Where does McCue buy such large amounts of molasses and sugar cane?

“Our chef orders it for me,” he said. “I buy it by the gallon — 20 gallons at a time. He thinks I’m making cookies down here.”

Mole cricket challenge continues

By RICK BRANDENBURG

Although managing mole crickets on golf courses is a chore reserved primarily for superintendents in the Southeast, this pest has spread northward, through 26,000 rounds in a seven-month season.

On the greens we put down .38 pounds of N last April 18, McCue said. “By supplementing with all these other sources of food, we were able to go without fertilizing again until July 29.”

He said his molasses mixture costs about one-half the price of over-the-counter roots products. Where does McCue buy such large amounts of molasses and sugar cane?

“Our chef orders it for me,” he said. “I buy it by the gallon — 20 gallons at a time. He thinks I’m making cookies down here.”

Research sheds light on control

Under certain conditions, higher rates of some products will actually perform poorly as compared to lower rates. Poor control is often associated with the behavior of the mole cricket and its ability to avoid pesticides. Pesticides also lose effectiveness over time and equipment application equipment calibration, directing control efforts against the small crickets, and avoiding treatment under extreme weather conditions help avoid these failures. Irrigation also influences control and this area is still under study because the response to irrigation is somewhat dependent

Continued on page 18

Continued on page 22
Mole crickets

Continued from page 17

their abundance and life stage, until it is often too late to effectively control them. Secondly, their subterranean nature makes it more difficult to get control strategies, like insecticide, in contact with the pest.

A few recent findings on mole crickets are useful for managing this and other soil insect pests. While mole crickets still present a significant challenge, the cost of control is quite high, the future looks bright for improving our success.

The key to mole cricket management is scouting and monitoring. Since the pest spends most of its life underground, good records of where it occurs each year and when its eggs hatch are critical to success. The cricket is easiest to control when it is small. However, this usually occurs in April through July when the Bermudagrass is green and growing rapidly and no surface damage is visible. Effective management requires application of control measures at this time.

Detection of egg hatch is best accomplished by using a soapy water flush. This consists of applying a mixture of two gallons of water and two tablespoons of liquid dishwashing detergent to an area of approximately one square yard. Any small crickets within this area will come to the surface within a few minutes. Weekly soap flushes in the late spring and early summer allow the superintendent to keep track of the initiation of egg hatch. The task of monitoring egg hatch may seem overwhelming in light of the acres to be covered. However, scouting for adult damage in the early spring and monitoring damage from crickets in past years can develop a map of “hot spots” where crickets are most likely to occur. Treatments should be applied soon after peak egg hatch.

Recent research has helped researchers understand why pesticides don’t always work as well as hoped. First, mole cricket development varies from one year to the next. Simply treating based upon a calendar date will lead to disappointment.

Another factor is that mole crickets have a remarkable ability to detect and avoid insecticide applications. Under certain conditions they go deep in the soil and avoid the insecticide for a week or longer.

Irrigation also plays an important role in mole cricket control, but it is not as straightforward as simply irrigating following insecticide application.

During the past 10 years, many companies have produced a wide array of pesticide application products has made great strides in recent years. Several companies have successfully produced commercial quantities of the spores of Beauveria bassiana and it is now available for turfgrass insect management, including mole crickets. These products have not been extensively tested in the field, but numerous trials are underway this year to further determine their fit in mole cricket management programs.

Research: ‘More’ is not always ‘better’ with chemical applications

Continued from page 17

upon the specific product in use.

We naturally assume that watering the insecticide into the soil will increase its effectiveness against an insect that lives in the soil. Recent research has indicated that the picture is much more complicated than this and the use of pre- and post-treatment irrigations and the amount of irrigation can make a big difference in the control.

Research has demonstrated that subsurface application equipment, as a rule, improves performance of many insecticides. But, we have not always seen significantly improved control, nor always the reduced rates working as well. One must look carefully at the wide range of equipment available and consider cost versus benefit before relying into subsurface application.

The production of biological control products has made great strides in recent years. Several companies have successfully produced commercial quantities of the spores of Beauveria bassiana and it is now available for turfgrass insect management, including mole crickets. These products have not been extensively tested in the field, but numerous trials are underway this year to further determine their fit in mole cricket management programs.

Irrigation Systems. The SitePro 2 computerized central is picture-perfect irrigation control. Realistic, dynamic maps deliver maximum flexibility and productivity.

Agronomics. Fertigation with BioPro liquid nutrients is the best and most environmentally responsible way to fertilize.

Turf Maintenance Equipment. The new Groundsmaster 2 mower and attachments traditional mowers can’t.

1 1997 The Toro Company, 8111 Lyndale Avenue South, Bloomington, Minnesota 55420.