A. PLANNING AND SITING

1. Developers, designers and others involved in golf course development are encouraged to work closely with local community groups and regulatory permitting bodies during planning and siting throughout the development process. For every site, there will be local environmental issues and conditions that need to be addressed.

2. Site selection is a critical determinant of professionals in this process.

3. On the site analysis and/or regulatory review process, it may be determined that some sites are of such environmental value or sensitivity that they should be avoided. Other less environmentally sensitive or valuable sites may be more suitable and environmentally acceptable.

4. The presence and extent of some sensitive environments may render a site unsuitable or, in some cases, less suitable for golf course development. Examples include, but are not limited to:

 a. Wetlands—habitats for threatened or endangered plant or animal species.

 b. Sensitive aquatic habitats.

 c. There may be opportunities to restore or enhance environmentally sensitive areas through golf course development by establishing buffer zones or by setting environmentally sensitive areas aside within the site.

5. Golf course development can be an excellent opportunity for improving or rehabilitating previously degraded sites (e.g., lands, fills, quarries and mines). Golf courses are also excellent treatment systems for eutrophic water and use of effluent irrigation is encouraged when it is available, economically feasible, and agronomically and environmentally acceptable.

B. DESIGN

1. When designing a golf course, it is important to identify existing ecosystems. Utilizing what nature has provided is both environmentally and economically wise.

2. Emphasizing the existing characteristics of the site can help retain natural resources, allow for efficient maintenance of the course and will likely reduce permitting and site development costs.

3. A site analysis and feasibility study should be conducted by experienced professionals.

4. The identification of environmentally sensitive areas and other natural resources is important as a design that can be achieved that carefully balances environmental factors, playability, and aesthetics.

5. Cooperative planning and informational sessions with community representatives, environmental groups and regulatory agencies should be part of the initial design phase. Early input from these groups is very important to the development and approval process.

6. The dialogue and exchange of information should continue even after the course is completed.

7. Native and/or naturalized vegetation should be selected or reseeded where appropriate in areas that are not in play. In playing areas, designers should select grasses that are best adapted to the local environmental conditions to provide the necessary characteristics of playability yet permit the use of environmentally sustainable maintenance techniques.

8. Emphasis should be placed upon the design of irrigation, drainage and retention systems to ensure efficient and other factors will influence the feasibility of water reuse.

9. The use of integrated pest management measures should be maintained and/or created, if appropriate, to protect high quality natural resources or sensitive aquatic surfaces. Suitable soils, climatic conditions, groundwater hydrology, vegetation and associated biological, cultural, physical, mechanical, and chemical methods must be environmentally sound and should be properly screened and tested before implementation.

10. Environmental control measures should focus on practices such as the introduction of natural pest enemies (e.g., parasites and predators), utilization of natural pest enemies, improving air movement, soil aeration techniques, and mechanical traps. Biological control methods must be environmentally sound and should be properly screened and tested before implementation.

D. MAINTENANCE

1. Employ the principles of Integrated Plant Management (IPM), a system that relies on a combination of common sense practices of prevention and non-toxic (e.g., weeds, diseases, insects) in which monitoring is utilized to identify pests, damage thresholds, and economic thresholds (e.g., pest population changes) and more sensitive management options are evaluated and selected (implemented) and combine or compete to control pests.

2. Use routine monitoring and record keeping, identify the pest problem, analyze the conditions causing it, and determine the damage threshold level below which the pest can be tolerated.

3. Derive ways to change conditions to prevent or discourage recurrence of the problem. Examples include: utilizing improved (e.g., drouth-resistent, pest-resistant) turfgrass varieties, modifying microclimate conditions, or changing cultural practice management programs.

4. Brew thresholds are set, select the combination of control strategies to suppress the pest populations with minimal environmental impacts. Control measures include biological, cultural, physical, mechanical, and chemical methods. Biological control methods must be environmentally sound and should be properly screened and tested before implementation.

5. Environmental control measures should focus on practices such as the introduction of natural pest enemies (e.g., parasites and predators), utilization of natural pest enemies, improving air movement, soil aeration techniques, and mechanical traps. Biological control methods must be environmentally sound and should be properly screened and tested before implementation.

6. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

7. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

8. Facilities should inform golfers and guests about golf course chemical applications.

9. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

10. Facilities should inform golfers and guests about golf course chemical applications.

11. Facilities should inform golfers and guests about golf course chemical applications.

12. Facilities should inform golfers and guests about golf course chemical applications.

13. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

14. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

15. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

16. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

17. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

18. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

19. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.

20. Facilities should adopt practices and technologies that conserve natural resources and enhance the ecological functions and services provided by local ecosystems.