GCSAA, chapters float dual membership requirement

By PETER ELAIS

LAWRENCE, Kansas — A proposal that would have required anyone belonging to a local superintendents' association to also join the national organization by the year 2010 has been defeated during September's Golf Course Superintendent's Association of America chapter relations meeting here.

What eventually emerged from the two-day conclave was a compromise measure mandating dual membership for new members beginning July 1, 1997. Anyone joining a local chapter after that date would also have to join the GCSAA. Likewise, anyone joining GCSAA would also have to join a local chapter. Existing members would not be required to join both organizations.

The proposal could be enacted on the national and local levels over the next few months. Most of the 95 chapter representatives who met here to discuss the proposed chapter affiliation agreement agreed dual membership would increase the professional image of all superintendents.

But many disagreed with the requirement proposed by the GCSAA Chapter Relations Committee that all superintendents and assistant superintendents join both organizations. The proposal would require 51 percent of a local chapter's Class A, B and C members hold joint membership by the year 2000, 75 percent by 2005 and 100 percent by 2010. "There are some existing members who just don't want to join the national association," said Jim Hodge, president of the Maine Golf Course Superintendents Association (GCSA) and head superintendent at Val Halla Golf Club in Cape Elizabeth. "So we want to see 100-percent participation in both organizations. But there are other avenues to get there rather than simply requiring everyone to join by the year 2010." A recommendation from the floor that the proposed chapter affiliation agreement be amended so that only new members be required of both organizations gained the support of better than two-thirds of the chapter representatives, Hodge said.

"Requiring just new members to join

New products for wood ensure soft-spike safety

By TERRY BUCHEN

We are fortunate to have new technology available in the form of spikeless golf spikes. These spikeless alternatives have made our jobs easier in providing better playing conditions, and it will be interesting to see if they will survive the test of time. Many golf courses have banned metal golf spikes, favoring the "greens-friendly" spikeless variety.

The only disadvantages: They sometimes will come loose and can become lost when used on an older set of golf shoes; and they are slippery on wooden bridge surfaces (especially if they have an incline) from the elements of heavy dew, irrigation, rain, fall and sometimes even fog.

To help eliminate these from potentially "falling to their knees," a couple of products can be applied to any wooden bridge surface for excellent results. Flexigran and Play Bound are two types of rubberized or urethane surfaces that are "poured-in-place." They can be applied to any surface that is at least 24 inches wide. Flexigran can be applied to any bridge surface in any widths or configurations the superintendent desires. The rubberized or urethane product containing material available locally. If a reliable source of calcium carbonate were available, it could have been used instead of the dolomite. This is the safest and most efficient method of raising the pH of the water and creating a buffer to further pH change both in the water and ultimately in the soil.

At the Banyan Tree Country Club site, acidic deposits had built up over the many years of operation. Runoff from the old tin mine had acidified the ground water in the area and effectively destroyed the bridge and ultimately in the soil.

When the pH of any water or soil is lower than 6.0, the carbonate ion buffer is converted to carbonic acid. The carbonic acid can decompose and the buffer may be lost as carbon dioxide and water, releasing carbon dioxide and water, releasing calcium carbonate into the soil. By the year 2000, 75 percent by 2005 and 100 percent by 2010."

Continued on page 20

Low pH can destroy pump stations as well as turf

By TOM LUBIN

Normally the most acidic rain and the most acidic lakes are found in the Northern United States and Southeastern Canada. In many cases the low pH has been traced to industrial air and water pollution in both countries. When the pH of lakes falls below 6.0, some species of fish and other organisms are affected adversely. Depending on the plant material pH values, lower than 6.0 may affect the plant metabolism adversely.

Acidic irrigation water available for use on golf courses and other irrigated facilities may cause problems not only for the plant material. It can literally dissolve the pump station. A case in point is at Banyan Tree Country Club in Phuket, Thailand.

Tom Lubin is a professor of chemistry at Cypress College in Cypress, Calif.

Continued on page 17

Second of two parts

This golf resort was built on a site near an old tin mine. A combination of the very acidic irrigation water with a pH of 2.7 with an appreciable tin ion concentration literally dissolved the pump station over three months. A number of attempts to solve the problem failed, and for a period of time a welder was on call to repair leaks as they occurred.

The water at a pH of 2.7 essentially contained none of the buffering provided by the bicarbonate ion normally found in less acidic water. The only way to provide a long-term answer to these problems would be to re-establish the bicarbonate buffer. This was accomplished using dolomite (calcium and magnesium carbonate), the best quality powdered carbon-