Here are some hints from superintendents for best maintaining velvet bentgrass

By DR. R. SKOGLEY

Although some variation existed among superintendents, the following practices of velvet bentgrass care were generally agreed upon:

- Soil pH — Keep, or develop, a pH of 5.0 to 5.5. Velvet performs well on acid soil while Poa annua does not — a natural method of Poa control. Use ammonium sulfate as a nitrogen source to reduce of maintain the pH level. Use gypsum (calcium sulfate) for a calcium supply.

- Fertilizer program — An exact program varies with the growing season but, generally, the seasonal nitrogen rate should not exceed three pounds per 100 sq. ft. Even less may be adequate. The first seasonal application should be made from early to late May, depending on regional location.

Velvet bentgrass is very winter hardy, goes into winter dormancy, and resumes spring growth, later than creeping bent. A nitrogen application should not exceed 1/2 lb. per 1000 sq. ft. per application and 1/4 lb. applications are suggested during the summer.

Natural organics are often used for summer feeding. It is suggested that phosphorus be avoided in fertilizers (except on sand) for regular maintenance. The occasional usage of minor and trace elements, alone, or with fungicide application, is suggested.

If growth is adequate but color enhancement is desired, iron sulfate may be applied at 1/2 to 1 ounce per 1000 sq. ft. Due to the tight knit nature of a healthy velvet bentgrass sward, occasional applications of water soluble, foliar fertilizers may enhance color and uniformity.

- Fungicides — Velvet bentgrass — A preventative program, encompassing a contact-systemic, disease control in New England have been known from 3/32 to 5/32 inch. The higher cut should prove a healthier height.

- Mowing — Velvet will tolerate very close mowing. Beautiful velvet greens inspected in New England have been known from 3/32 to 5/32 inch. The higher cut should prove a healthier height.

- Irrigation — Velvet bentgrass is drought tolerant and requires less water than creeping bents. It is less serious to under-water than to over-water. Through watering every three days may be adequate, yet one successful superintendent stated that he watered from 5 to 15 minutes daily, depending on season and winds.

- Fungicides — Velvet bentgrass, properly grown, is the most disease resistant of all bents. Still, velvet bentgrass can be susceptible to Copper Spot (Gloeocerasporo sorghi), a disease rarely seen in creeping bentgrass.

- Aerification and top dressing — Velvet bentgrass attains great density through frequent tillering, extensive root production, and growth of short stolons. Without a vigorous aerification and topdressing program, excessive thatch and surface softness will develop. These practices are particularly important on velvet greens.

- Fertilizer program — An exact program varies with the growing season but, generally, the seasonal nitrogen rate should not exceed three pounds per 100 sq. ft. Even less may be adequate. The first seasonal application should be made from early to late May, depending on regional location.

- Soil pH — Keep, or develop, a pH of 5.0 to 5.5. Velvet performs well on acid soil while Poa annua does not — a natural method of Poa control. Use ammonium sulfate as a nitrogen source to reduce of maintain the pH level. Use gypsum (calcium sulfate) for a calcium supply.

- Fertilizer program — An exact program varies with the growing season but, generally, the seasonal nitrogen rate should not exceed three pounds per 100 sq. ft. Even less may be adequate. The first seasonal application should be made from early to late May, depending on regional location.

- Soil pH — Keep, or develop, a pH of 5.0 to 5.5. Velvet performs well on acid soil while Poa annua does not — a natural method of Poa control. Use ammonium sulfate as a nitrogen source to reduce of maintain the pH level. Use gypsum (calcium sulfate) for a calcium supply.

- Fertilizer program — An exact program varies with the growing season but, generally, the seasonal nitrogen rate should not exceed three pounds per 100 sq. ft. Even less may be adequate. The first seasonal application should be made from early to late May, depending on regional location.

- Soil pH — Keep, or develop, a pH of 5.0 to 5.5. Velvet performs well on acid soil while Poa annua does not — a natural method of Poa control. Use ammonium sulfate as a nitrogen source to reduce of maintain the pH level. Use gypsum (calcium sulfate) for a calcium supply.

- Fertilizer program — An exact program varies with the growing season but, generally, the seasonal nitrogen rate should not exceed three pounds per 100 sq. ft. Even less may be adequate. The first seasonal application should be made from early to late May, depending on regional location.

- Soil pH — Keep, or develop, a pH of 5.0 to 5.5. Velvet performs well on acid soil while Poa annua does not — a natural method of Poa control. Use ammonium sulfate as a nitrogen source to reduce of maintain the pH level. Use gypsum (calcium sulfate) for a calcium supply.

- Fertilizer program — An exact program varies with the growing season but, generally, the seasonal nitrogen rate should not exceed three pounds per 100 sq. ft. Even less may be adequate. The first seasonal application should be made from early to late May, depending on regional location.

- Soil pH — Keep, or develop, a pH of 5.0 to 5.5. Velvet performs well on acid soil while Poa annua does not — a natural method of Poa control. Use ammonium sulfate as a nitrogen source to reduce of maintain the pH level. Use gypsum (calcium sulfate) for a calcium supply.

- Fertilizer program — An exact program varies with the growing season but, generally, the seasonal nitrogen rate should not exceed three pounds per 100 sq. ft. Even less may be adequate. The first seasonal application should be made from early to late May, depending on regional location.

- Soil pH — Keep, or develop, a pH of 5.0 to 5.5. Velvet performs well on acid soil while Poa annua does not — a natural method of Poa control. Use ammonium sulfate as a nitrogen source to reduce of maintain the pH level. Use gypsum (calcium sulfate) for a calcium supply.