Tall fescue breakthroughs may eliminate overseeding

By MARK LESLIE

T

he golf industry stands at the edge of an age in which extraordinarily stress-tolerant tall fescue turgrasses will be available and may eliminate the need for overseeding in the South. “What you’re seeing is a brand-new era and a totally different germplasm base of new fescues that will come out in [the marketplace] in the next three, four, five years,” said Dr. Ronny Duncan of the University of Georgia’s Griffin Experimental Station. “We will have a whole new generation of stress-tolerant tall fescues that will perform over and above [current] material.”

Duncan reports “significant advances” made “very fast” by breeders of tall fescues. After just one cycle of breeding, Duncan has had “a hundred-fold improvement in adaptability to acid soil and stressful environments,” he said. “It’s like night and day. I’m already in the second cycle of breeding, and if I make half as much progress in the second cycle as in the first, we are really going to have some well-adapted material.”

Duncan and other turfgrass breeders in the South are building on the great progress made in the transition zone by the long-standing research program of Dr. Reid Funk at Rutgers University in New Jersey. Funk said “very much more” research is being done on tall fescues. “With the development of turf-type tall fescues, it was demonstrated we could make significant improvements in lower growth, better wear tolerance, finer leaves and more attractive appearance,” Funk said.

“Current varieties are doing a superb job in much of California, a good job in areas that don’t have extreme summer stress,” he added. “They are doing an excellent job in Mediterranean climates of southern Europe.”

Robinson said seeds being tested in China and Austria are “looking pretty good.”

Tall fescue breeding programs have always been done north of Virginia and

Continued on page 19

Bottom line: TGIF must sink or swim on its own

By PETER BLAIR

Checking through requests in the Monday morning Turfgrass Information File (TGIF) message box:

• Any information on broadleaf weed control in the Northeast.

• Written justifications given to club boards of directors in requesting an outside architect to oversee course renovations.

• Information on the relationship between geotextile liners and bunker sand consistency.

• Examples of successful bioremediation techniques for maintaining golf course lakes and ponds without chemicals.

• Everything on basidioscyptoms—a fungal growth related to fairy rings.

This is the type of information superintendents, students, golf industry manufacturers and researchers commonly request from

Continued on page 17

Modifying spreaders, adding drains

By TERRY BUCHEN

FERTILIZER SPREADERS

We have modified our 36-inch stainless steel drop fertilizer spreader slightly so we can “see where we are going” while applying granular fertilizer and pesticide applications after the greens and tees have been mowed and/or the dew has left for the day. We used a Toro/Olathe Rake-O-Vac plastic sweeper “finger” that is folded in half and bolted near the bottom of each leg. As the person applies the granular materials, the plastic “fingers” lift up the turf enough so they know exactly how much to overlay for a near-perfect, skip-free application. The fingers have to be pushed back to their original shape occasionally to apply enough pressure to the turf surface. It works quite effectively when the turf surface is dry and seeing the wheel-overlap marks is difficult.

CATCH BASINS

We are fortunate to have a main line drainage system on most of our golf holes which consists of PVC sewer pipe ranging in diameter from six to 12 inches. At each low point in the fairways and roughs is a concrete vertical “catch basin” with a metal 18-inch removal grate on top. As each main line and lateral four-inch drain line connects into their respective catch basins, the hole made in the concrete is patched with an instant concrete mix.
As we get finer and finer textures and improve adaptability to lower mowing heights, we’ll see it more in the high-traffic areas... It will give golf courses more flexibility than they have now.

Dr. Ronny Duncan, Univ. of Georgia

I'll - Urbana, Ill., silt loam and silt, N/A, 3.1-4.0, 1.5-2.0, only during severe stress.
Il2 - Carbondale, Ill., silt loam and clay, 6.1-5.5, 2.3-2.0, 1.1-1.5, to prevent dormancy.
Ill - West Lafayette, Ind., low maintenance, silt loam and silt, 6.6-7.0, 3.1-4.0, 2.1-2.5, to prevent stress.
Ill2 - West Lafayette, Ind., low maintenance silt loam and silt, 6.6-7.0, 0.0-1.5, 2.1-2.5, no irrigation.
Ilm - Milwaukee, Wis., silt loam and clay, 6.6-7.0, 3.1-4.0, 2.1-2.5, to prevent stress.
Ilp - Aurora, Ill., sandy clay loam, 6-6.0, 2.0-1.5, 1-1.5, to prevent stress.
Il2 - Post Falls, Idaho, 6.4-6.5, 2.3-0.0, 1.5, to prevent stress.

GOLF COURSE APPLICATIONS

NJ1 - North Brunswick, N.J., loam, 6.0-6.5, 0.8-2.0, to prevent dormancy.
NJ2 - Eichelmyer, N.J., sandy loam, 6.1-5.5, 2.3-1.5, 1.5-2.5, 1.1-1.5, to prevent stress.
NJ3 - York, York Co., N.Y., N/A, 3.1-4.0, 2.0-1.5, no irrigation.
NJ4 - Maryville, Ohio, clay loam, N/A, 3.1-4.0, 1.5-2.0, only during severe stress.
NJ5 - Dallas, Tex., (high mowing), clay loam and clay, 6.6-7.0, 6.4-5.5, 4.1-3.0, 1.0-2.0, to prevent stress.
NJ6 - Fredericksburg, Va., loam, 6.1-6.5, 2.1-1.5, 1.1-1.5, to prevent stress.
NJ7 - Blacksburg, Va., silty clay loam, 6.1-6.5, 3.1-4.0, 2.1-2.5, only during severe stress.
NJ8 - Cape Girardeau, Mo., sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, only during severe stress.
NJ9 - Norfolk, Va., sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, only during severe stress.
NJ10 - Tuscaloosa, Ala., sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, only during severe stress.
NJ11 - Mobile, Ala., fine sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, 1.0-1.5, to prevent stress.
NJ12 - Nashville, Tenn., clay loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, 1.0-1.5, to prevent stress.
NJ13 - Orlando, Fla., loam, 6.1-6.5, 3.0-1.5, 1.1-1.5, to prevent stress.
NJ14 - Fort Lauderdale, Fla., fine sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, to prevent stress.
NJ15 - Pensacola, Fla., fine sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, to prevent stress.
NJ16 - Hilton Head, S.C., fine sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, to prevent stress.
NJ17 - Myrtle Beach, S.C., sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, to prevent stress.
NJ18 - Wilmington, N.C., fine sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, to prevent stress.
NJ19 - Virginia Beach, Va., silty clay loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, only during severe stress.
NJ20 - Wadesboro, N.C., sandy loam, 6.1-6.5, 3.1-4.0, 1.1-1.5, only during severe stress.