Golf Carts Called as Much a Hazard As Cars

TALLAHASSEE — Mildred Meister, pausing for a drink of water before the eighth tee at a Hollywood-area golf club, was stepping out of her E—Z—GO cart in August 1978 when a runaway cart pinned her against a rest-area building.

She wants to collect damages from the golf club, but an appellate court said she can't because a golf club is not responsible for its golf carts as long as they are in good working condition.

But Mrs. Mesiter’s attorney, Mark Hicks, argued before the Florida Supreme Court Thursday that carts like the one that injured Mrs. Meister are as dangerous as automobiles.

Just as much as the driver of the vehicle, Emerald Hills Country Club should be responsible for paying for the multiple, painful fractures to her leg, Hicks argued.

If the high court accepts Hicks’ argument, country clubs, airports and any other owners of similar carts would be responsible for injuries caused by the carts, even if there is no way they could have prevented them.

The “dangerous instrumentality” doctrine, a rule that dates to the era of the Model T, covers cars and several other motor vehicles, making the owners liable for their use.

The Sunshine State, with its ever-present golf courses, should include golf carts in that rule, Hicks contended. In fact, every motorized vehicle, including lawn mowers and possibly electric wheelchairs, can be dangerous instruments, he said.

“A golf cart is a car,” the attorney said. “Some cars are motorized with gas engines, some have electric engines. I think we’re getting hung up on the definition of a golf cart.”

But Joseph Kashi, attorney representing Emerald Hills, argued that golf carts are not motor vehicles and are not dangerous instruments. They are not as dangerous as cars, nor as widely found on public thoroughfares, the attorney argued.

“Golf carts on golf courses are not used on a highway,” he said. “We feel that the fact that a vehicle . . . is principally designed for use off the public highways takes away from its menacing nature.”

The justices seemed fascinated by this argument that depends largely on comparing the varying safety of vehicles, from mopeds to tractors.

Justice Parker McDonald asked with a smile how much a ruling that carts are dangerous might affect cart fees.

Much of the questioning sought the shades of difference between injuries from a car and those from a cart.

The suit against the driver of the cart, who was a friend of Mrs. Meister’s is pending until the golf cart issue is settled. Mrs. Meister named the country club in the same suit.

Last fall, the 4th District Court of Appeal in West Palm Beach ruled that golf carts are motor vehicles but declined to consider them dangerous instruments.

The state Supreme Court is expected to issue a decision on the status of golf carts in several months.

Credit: Fort Lauderdale News
After working on them, driving on them, inspecting and appraising their condition, color, and overall general health, prescribing the best antidotes to keep them healthy and happy, spending more time on them than you do with your wife, who on earth would want to get back on the greens after quitting time?

An avid golfing superintendent.

Fortunate indeed is the man (or woman!) who can both work and play on the greens they call their second home away from home!

There seemingly is no negative response to the question: "Should superintendents play golf?" Common sense and a random survey provided the answer and it’s a deafening YES!

Mark Henderson, superintendent of Atlantis Golf Club in West Palm Beach was kind enough to provide some insights on the subject. He has been at the 380-member private club for just over a year, has eight years experience as a superintendent, and is working towards certification. Mark is an avid golfer, and though an overdue baby has kept him a little closer to home and family at the time of this interview, he still manages to hit the links once or twice a week. Every course he has worked on in the past has allowed superintendents to play, and Mark admits he probably wouldn't take a job where the owner/board was adamantly against it.

Why should a superintendent play golf?

M.H.: “The first-hand experience of a superintendent on a course is vital. A playing superintendent can get out there and determine the playability of his greens. He can correct problems before they occur, and if a member complains, a playing superintendent will know exactly what he is talking about. Developing a feel for the greens puts him in closer touch with his course. It can often be more work than play — Your eyes are constantly roving, searching for those little things that are often overlooked in the overall day-to-day maintenance. Are the tee markers lined up correctly? Are the pin placements right? You can adjust your work plans for the next day as you go along. If the greens are slow, you may decide to go ahead and double-cut them instead of what you had originally intended to do that day. This prevents members’ complaints before they have a chance to come in. It also brings you together with your members and gives you a chance to hear what they have to say about their needs and wants on the course.”

Those that play the game in almost all cases make the best workers. A random survey of several Palm Beach County superintendents revealed that all thought superintendents should be allowed to play, and all were allowed to, on their respective courses. When asked if assistants and employees should be allowed to play golf, the unanimous response was YES! All courses polled said that their employees were allowed to play; assistants, for the most part, year ‘round and employees with certain restrictions ranging from after work (anytime) to specific months of the year or days of the week.

(continued on page 43)
Happy superintendents stay longer. It seems pretty safe to assume this. If a superintendent is allowed to release the day-to-day tensions from salesmen, insects, weeds, weather, suppliers, crew, etc., it translates into a benefit for the club while costing them nothing. Those extra hours of “trained-eye time” can save them thousands of dollars by spotting problems before they erupt. Being able to play the course you work on provides that extra little motivation to keep the greens beautiful and healthy. You’ll go that extra inch, yard, or mile, not only for club, but for yourself as well.

Please allow this writer to take this issue one step further. Should the golfing privilege be extended beyond the superintendent to his assistant and employees? This may raise a few conservative eyebrows and qualms among the owners and Boards of Directors of golf courses, but the potential benefits returned to the clubs are tremendous. When questioned about his views and policies, Henderson again gave the idea an emphatic yes. He has 18 employees and supports their playing, even encourages it.

M.H.: “The Board at Atlantis decided that employee golf privileges were allowed before I came here. Though I have refined the guidelines a little bit, my assistant can play all year ‘round, and the other employees may play any afternoon from May thru October. One unique benefit that Atlantis provides to their employees is the use of a cart.”

Does knowing the game have a positive impact on their view of their work?

M.H.: “Undoubtedly. For example, take raking sand traps. To a non-player, this isn’t significant, but a golfer knows that you don’t want any grooves marring the surface and hindering your game. A playing employee understands the little nuances involved which the non-playing employee doesn’t instinctively recognize, even though he can be an excellent worker.”

Do you think that golfing privileges for an employee is a factor in their staying at a specific course?

M.H.: “Yes, an employee who enjoys the game tends to stay longer at an obliging course, which reduces the turnover rate and helps you keep the good workers. Instead of moving on to another job, he’ll stay where he can keep the golfing privilege.”

Henderson and his crew (some of which are golfers!) have their hands full at Atlantis Golf Club this year, rebuilding 9 greens and installing a new computer irrigation system on all 27 holes. 18 greens are scheduled to be rebuilt next year.

Every superintendent polled revealed that they would prefer their employees to be golfers, to better understand their jobs. This privilege, from superintendents on down the line, benefits clubs in many ways.

Maybe now is the time for those clubs who do not allow their employees to play golf to re-think their “members only” policies.

Post Script: Between the interview and press dates, Mark, Leslie and son Jade welcomed Paris Mills Champagne Henderson into the world! She is an 8 pound, 7 ounce beauty (angel?)! Congratulations Folks!

EFFECTS OF CHEMICALS ON EARTHWORM POPULATIONS

Occasionally we get questions about the effects of chemicals on earthworms. This is a list published in a recent issue of Bug Dope, Ohio State University. Thought it might be of interest.

No effect: Diazinon, Dylox, Guthion, Octanol, and Proxol.

Increase in Worms: Nitrogen fertilizers, Lime and Nitrate of soda.

Slightly Toxic: Malathion, Dursban, Parathion, Disyston, and Chloro-IPC.

Extremely Toxic: Sevin, Chlordane, Thimet, Temik, Furadan, Dyfonate, Benomyl, Chloropicrin, Methyl Bromide, D-D fumigant, Copper sulfate, Arsenicals, and Sulphate of ammonia.

NOTE: Fertilizer effect may be direct by changing the acidity of the soil, or indirect by changing the form and quantity of the vegetation that ultimately provides food for worms.
GRASS AND TREE
ROOT RELATIONSHIPS

By CARL E. WHITCOMB

Plants growing in natural or man-made landscapes are continually competing with other plants. Despite the appearance of vertical separation by different growth forms of above ground plant parts, beneath the soil surface the root systems of these plants interwine extensively.

It is the exception to find a home lawn, park or golf course where an expanse of turfgrass exists without woody plant competition. Nearly all turfgrass research conducted to date has been done on field plots in fully exposed areas. Likewise, most woody plant research, trees and shrubs, has been done without the presence of turf, usually under clean cultivation.

What I have attempted to do, is to study these two plant groups when they are growing together: competing. This is no easy task, as many interrelated factors are involved, such as light, water, nutrition and possibly chemical inhibitors. Shade has been listed as the primary reason grass does not do well beneath trees. There is no doubt that shade has an effect on grass performance but what about other possible factors?

EXPERIMENTAL PROCEDURE

In order to study tree-grass relationships without light becoming a limiting factor, a new, "connecting pot technique," was developed. In this system a tree was planted in one container with a portion of its root system extending out of that container and into adjacent smaller pots. The smaller pot can then be seeded, sodded, or sprigged. This approach allowed determination of the effects tree roots have on various aspects of grass growth and likewise, the effect of the grass on the tree root development. The trees were placed at random on a platform, with the smaller pots arranged beneath. In this way, all pots, regardless of treatment, received the same amount of shading. The results obtained are, therefore, independent of light effects.

Two tree species were used: silver maple, Acer saccharinum and honeylocust, Gleditsia triacanthos. These were chosen based on observation of their effect on grass. Silver maple is very shallow rooted, and is difficult to maintain quality turf beneath. Honeylocust is deep rooted and is one of the easiest trees to grow grass beneath. Common Kentucky bluegrass was used as the test grass.

These experiments were begun at Iowa State University in January, 1967. Upon joining the staff at the University of Florida, I continued to use the same plants to keep from adding another variable to the study. I feel the results can basically be applied to all grasses and trees over a wide range of conditions.

Experiments were conducted as follows:

a. The grass to establish first.
b. the root system of trees and grass to invade the soil mass at the same time.

RESULTS

When the grass was established first, and tree roots were forced to invade soil containing well developed grass roots, there was no change in the grass response as measured by clipping weights, sod weights, root weights, root to shoot and counts of stem per pot. Fertilizer and water were added as needed. From this, one would conclude that on a short term basis, even under low light conditions, the turf was able to function as though tree roots were not present, if it were established first. This is probably the case for the first one to two years following the planting of a tree in an area of established turf. However, a grass root, even though considered a perennial, (continued on page 45)
does not live for an extended period of time. Rather, new roots are continually replacing older ones.

Tree roots, on the other hand, are basically much longer lived, growing in length and diameter. Over a period of years, as grass roots die, the tree roots become better and better established by replacing the grass roots in the soil volume.

To test this, an experiment was established where tree and grass roots were forced to invade a volume of soil at the same time. This would simulate conditions where grass roots had died and new grass roots and tree roots were vying for that particular soil area.

GRASS ROOT YIELDS WERE REDUCED BY AS MUCH AS 59% BY SILVER MAPLE ROOTS.

The effect of the grass was very striking under these conditions. Grass root yields were reduced by as much as 59% by silver maple roots and 35% by honeylocust roots as compared with a control pot having no tree roots (Figure 1). On the other hand, grass sod yields were reduced, but not so drastically. As root competition increased, the grass maintained approximately the same production of sod with a greatly reduced root system. The root to shoot ratio shifted, making the grass much less resistant to wear, drought, attacks from disease and insects and restricting the supply of nutrients. This is how the tree wins out over a period of time.

The question arises, can we fertilize the grass on the soil surface and favor its development over that of the trees? Tree roots are more shallow than previously thought. A few anchor roots may penetrate the soil 10 feet or more, but most functional tree roots are in the upper 6 inches of soil. Many of these roots are at the soil surface and may actually be growing in the duff and litter of the grass. Because of this, surface fertilization benefits the tree as well as the grass. To get an equal response from grass where tree roots are present, results suggest a considerably larger amount of fertilizer should be applied (Figure 2). What this increase in fertilizer rate should be remains to be worked out through further experimentation. Probably at least a 30-50% increase in nitrogen should be used where tree roots are vigorously competing with the turf. This increase should include an area at least 1½ times the distance from the base of the tree to the spread of the outer most branches. For example: if the distance from the base of the tree to the outer most branches was 30 feet, then the fertilizer applied should be increased by 30 to 50% out of a distance of 45 feet from the base of the tree. This does not apply to palms.

EFFECT OF TURF ON TREES

When the grass was allowed to establish first and the tree roots were forced to invade soil containing well developed grass roots, although there was no effect on the grass, the reduction in silver maple roots produced was (continued on page 48)
The most effective crabgrass

Labels of your best pre-emergent crabgrass and goosegrass herbicides have one thing in common. And it can be summed up in a word: pendimethalin.

That's because pendimethalin from American Cyanamid is the active ingredient that offers season-long crabgrass and goosegrass control in both warm and cool season turf grasses. And it does it very economically.

But pendimethalin controls more than just crabgrass and goosegrass. One low rate also prevents other tough grassy weeds including foxtail, fall panicum, barnyardgrass and Poa...
and goosegrass control.

Hard-to-control broadleaf species like oxalis and spurge are also eliminated with the same rate.

What's more, pendimethalin breaks down into the environment. And it doesn't move laterally through the soil. Which means it won't seep into bodies of water or stop vegetation you don't want it to stop. Plus, pendimethalin-based herbicides don't have an offensive odor like some products.

So remember, when you select a herbicide with pendimethalin on the label, you have crabgrass and goosegrass control in the bag. And our word.

Always read and follow label directions carefully.
very striking. However, honeylocust roots remained unchanged (Figure 3). The reason for this contrast lies in the location of the tree roots. The shallow silver maple roots were attempting to grow in the zone of maximum grass roots, while the honeylocust roots remained in the bottom of the pot where grass roots were least concentrated and were thus only slightly reduced.

This effect no doubt plays an important part in the rate of establishment and subsequent growth of newly planted trees in areas of established turf. By maintaining an area void of grass and weeds, 8 to 10 feet in diameter, around newly planted trees wherever possible, their growth rate may be increased several times.

This area can be maintained by mulching, plastic and ornamental gravel, or herbicide sprays such as paraquat. Under no circumstances should the soil in this area be cultivated as many new roots would be destroyed. The first 3 growing seasons are probably the most important in aiding the tree. After that time it appears the tree can adequately compete with turf.

In the course of the experiment to measure the relationships of grass and tree roots invading a volume of soil at the same time, the effect on the tree-root development was measured. When the tree and grass roots had an equal chance to invade the soil mass, instead of the tree roots being reduced in volume by the grass, they were slightly increased (Figure 4). This further points to the conclusion that once the tree becomes established it no longer needs to be isolated from grass competition.

CONCLUSIONS

1. Established turf is not substantially affected by tree root competition for the first season following invasion.

2. Later, however, as grass roots die and are replaced by new roots the effect of competing tree roots becomes more pronounced. The tree roots slowly increase their concentration in the soil.

3. To maintain turf at a given nutritional level under conditions of root competition from trees, the amount of nitrogen applied should be increased by 30 to 50%.

4. The area influenced by an established tree extends at least 1½ times the distance from the base of the tree to the outermost branches.

5. Root development by newly planted trees is greatly influenced by the presence of established turf.

6. An area 8 to 10 feet in diameter should be maintained around all newly planted trees wherever possible.

7. Once the tree becomes established, after about 3 years, the tree roots are able to compete sufficiently well with the turf that only regular fertilization of the soil surface is needed.

*Research Associate, Department of Ornamental Horticulture, University of Florida, Gainesville, Florida.
Cut With The Best.

John Deere and Neff Machinery, your support team that stands above the rest.

With Neff, you get more than the best grounds care equipment. You get a team of professionals at each of our 4 branches dedicated to keeping your John Deere equipment where it's supposed to be — on the turf working efficiently sunup to sundown.

Cut with the best, and Neff will take care of the rest!

MIAMI
4343 N.W. 76th Ave. (305) 592-5470

WEST PALM BEACH
3933 Beeline Hwy. (305) 848-6618

ORLANDO
4333 John Young Hwy. (305) 299-1212

FT. MYERS
2995 Hanson St. (813) 334-3627
IN YOUR GARDEN — POISON IVY

"Careful that's Poison Ivy. Or is it?" An often heard phrase at this time of the year, when so many of us are out enjoying the forests, parks or even our own back yards. It is wise to know the difference between Poison Ivy and the harmless look-a-likes, advises Donna Peterson Detrick, Summer Horticulturist in Cook County.

Actually Poison Ivy is not an Ivy at all. It is a perennial plant which may vine on fences, trees or walls, may spread along the ground; or may appear as an erect shrub. The appearance of the leaves is variable as well. They may have smoothed, toothed, or lobed edges, and the leaf length may vary from 2 to 4 inches. It's not unusual to find different appearing leaves on the same plant. But three leaflets to the compound leaf will always remain constant.

Clusters of small, greenish-white flowers appear in the spring and by the end of the summer waxy, white berries about 1/8 or 1/4 inch in diameter form. These berries have distinct lines marking the outer surface, resembling a peeled orange.

There are some plants which are easily mistaken for Poison Ivy. Virginia creeper is frequently mistaken, but it has five leaflets to its leaf and blue berries. Remember despite the size and variations of the poison ivy leaflets, there will always be three of them.

Usually, but not always, poisoning is caused by contact with some part of a bruised plant. Very small quantities of the poisonous substance called urushiol can cause severe inflammation. This non-volatile phenolic substance is found in all parts of the plant including roots and berries. The danger of poison ivy is greatest in the spring and summer when the sap is flowing but it is possible to be poisoned in fall and winter too. The toxin is easily transferred from one object to another so that clothing, tools, and animals are capable of poisoning people. The first symptoms, itching and burning, may develop in a few hours or several days after contamination.

Often the easiest and safest method of controlling poison ivy is with herbicides. Be careful not to let the spray drift onto desirable plants or they may be killed as well. It is always best to spray any herbicide on a still day (or in the early morning) when the wind won't carry the chemical. In places where desirable plants may be hurt by the spray, try using a long-handled brush or wick applicator.

Best results occur when the poison ivy is treated in late spring or early summer after the leaves have fully expanded. Don't attempt to destroy poison ivy after the leaves have turned yellow.

Two similar chemicals which are particularly effective are amitrole (dry material) and amitrole-T (liquid), available under different trade names. Use two tablespoons of amitrole-T in one gallon of water, and spray all leaves thoroughly until wet. Another treatment may be required next year.

Do not try to remove the plants after treatment. They will still contain the toxins for several years. Burning the poison ivy is dangerous as well since the toxins will be released into the air and may poison people for many miles.

Though the plant may have many appearances just remember the old saying, "Leaflets three, let it be" and you should not have problems.

James A. Fizzell, Sr. Extension Adviser
Horticulture, University of Illinois

Nutri-Turf Inc.
ONE OF THE ANHEUSER-BUSCH COMPANIES

This Turf’s For You!

Premium Quality Sod & Sprigs For:

- Golf Courses
- Athletic Fields
- Residential Lawns
- Commercial Developments

P.O. Box 26147 • Jacksonville, Florida 32218 • (904)764-7100