“I saw a news report on the television that planning approval had been granted for the new Castle Stuart course, and I actually wrote a letter of application there and then.”

Chris Haspell, Course Manager

One of Stuart’s first appointments was Chris Haspell, who was drawn away from an excellent job in Denmark to become Course Manager.

Together with American architect, Gil Hanse, the newly-created Project Management team set about creating a golf course which would undoubtedly become one of the finest to be found anywhere.

“I was actually at Askernish doing some volunteer work with Gordon Irvine, when I saw a news report on the television that planning approval had been granted for the new Castle Stuart course and I actually wrote a letter of application there and then from the hotel,” recalled Chris, who had no idea at that stage that Stuart, who he’d met on a number of occasions, was involved in the project.

“Stuart called me and we met on site in May, 2006 and the site really did sell itself. He phoned me later to offer me the job, the stipulation being that I start within a month. I was very grateful to my old boss for his understanding in letting me go on the proviso that I return three times the first year and twice the second to advise on my old course.”

The work of turning agricultural fields into world class golf course began in earnest on June 26, 2006, with the earth moving to create a rough outline of the holes. The entire first year was spent shaping.

“Just over half the site was on pure sand and we began to sand cap the rest of the site, to a depth of 40cm, with sand quarried from elsewhere on the site. I would say that it began to look like a golf course in May or June 2007,” said Chris, who managed a construction team of 10.

“We were working to a schedule of a hole a week – which involved sandcapping, installing irrigation, seeding and final prep and we finished in November of ’07.’

Nothing was left to chance and quality was the watchword with the work carried out with Mark Parsinen on site permanently to ensure that his vision came to fruition.

An example of the attention to detail shown came on the 13th, a dogleg par-4, which boasts a wonderful view of the Kessock Bridge over the Moray Firth.

“Mark was adamant that when you play the course you should have it to yourself and that there should be seclusion on every hole. On the 13th he wanted to be able to see a slither of water below the Kessock Bridge from the fairway. We had already landscaped the entire area when Mark spotted the top of a greenskeeper’s head, who was stone picking on the 15th fairway, which runs behind the green.

He asked me how tall the guy was and I told him that he was six feet two. As a result we put a halt to seeding and lifted the fairway another six inches to 70 metres out so you couldn’t see anyone behind the green.”

The course has been seeded throughout with fescue which was a decision taken before Chris, a long time advocate of fescue from his time in Denmark, had come on board but for whom it was a huge attraction.

“We had a vision of trying to be as good as we could be agronomically and by having a pure sand type rather than a sand/soil mix has given us the opportunity to do that,” explained Chris, who also said that the wonderful gorse which had been grown from seed. That also looks as though it has been there for years.

“If we’d used any other type of grass with the pure sand I believe we would have had serious issues. We have issues now, fescue isn’t perfect, but the problems with maintenance would have been more serious had we gone down another route,” he said.

“What will intrigue me when we have the tournament is what the player perception will be to playing on pure fescue, because nowhere else does it and it will look different to what they’ve seen before.

“We will try and keep the seed bank as good as it is but we’ll try keep the fescue in the high 90%.”

Chris says that they probably won’t cut below five mill for the tournament.
“The Tour wants us to be stamping at nine the Friday before we start but the problem with fescue is that once you have the speed you can’t take it off because it doesn’t grow,” said Chris, who admits, particularly with the first of the three contracted Open, that he will be pleased when it is over and the week has been a success.

He has faced questions and some criticism for the fescue approach but is confident that as well as well criticism for the fescue approach there has been great support from the Golf Tourism Scotland Highlands has ever had. There has been great support and the local council which was happy with what they were shown and the agreement with the European Tour and the Barclay’s Scottish Open to a links course to attract a young field with relevant practice for the Open Championship, which traditionally follows the tournament coming to us,” said Chris or say no to one of his many requests.

I do know what it takes to get a product like this up and running but at the moment I’m really enjoying the challenge,” he said. “I’ve always thought it a shame that locker rooms tend to be in the cellar or back of the club with no windows. Coming here you can see the golf course, and all the wonderful views, when you are eating in the bar, from the locker rooms, even when you are taking a shower. It is a steep learning curve, but I’ve always believed that a desire and passion to get the job done is more important than the skill set which is needed for the job as you can always learn that and you find a way of getting it done. That’s what I believe – if you are given an opportunity you turn it down at your peril.

“Almost all adds to the experience.”

Stuart McColm is Course Manager at a Top 50 course There already had – Course Manager at a Top 50 course There potentially ended up with me in the same position as I another project which would take years of my life and that I would never have been in the hospitality game. However, I could put a budget together, look at sales forecasts, that sort of thing. So I felt that General Manager could be a natural progression for me.

“My team are a great mix of guys, most are local and four of them started here as young guys and came through apprenticeships. They’re all buzzing at the thought of the tournament coming to us”

Stuart: enjoying his new role

Stuart: enjoying his new role

Stuart McColm is Course Manager at a Top 50 course. He has faced questions and some criticism for the fescue approach but is confident that as well as well criticism for the fescue approach there has been great support from the Golf Tourism Scotland Highlands has ever had. There has been great support and the local council which was happy with what they were shown and the agreement with the European Tour and the Barclay’s Scottish Open to a links course to attract a young field with relevant practice for the Open Championship, which traditionally follows the tournament coming to us,” said Chris or say no to one of his many requests.

I do know what it takes to get a product like this up and running but at the moment I’m really enjoying the challenge,” he said. “I’ve always thought it a shame that locker rooms tend to be in the cellar or back of the club with no windows. Coming here you can see the golf course, and all the wonderful views, when you are eating in the bar, from the locker rooms, even when you are taking a shower. It is a steep learning curve, but I’ve always believed that a desire and passion to get the job done is more important than the skill set which is needed for the job as you can always learn that and you find a way of getting it done. That’s what I believe – if you are given an opportunity you turn it down at your peril.

“Almost all adds to the experience.”

Stuart McColm is Course Manager at a Top 50 course There already had – Course Manager at a Top 50 course There potentially ended up with me in the same position as I another project which would take years of my life and that I would never have been in the hospitality game. However, I could put a budget together, look at sales forecasts, that sort of thing. So I felt that General Manager could be a natural progression for me.

“My team are a great mix of guys, most are local and four of them started here as young guys and came through apprenticeships. They’re all buzzing at the thought of the tournament coming to us”

Chris Haspell, Course Manager
“My team are a great mix of guys, most are local and four of them started here as young guys and came through apprenticeships. They’re all buzzing at the thought of the tournament coming to us”

Chris Haspell, Course Manager
Weeds are simply plants in the wrong place at the wrong time but some grow so quickly they can smother, swamp and oust virtually all other plants. They are by definition invasive weeds colonising a wide range of ecosystems and environments. Those invading most methodically and with the worst effects are invariably alien (exotic) plant species, now with a ‘free hand’ in a new environment, because all closely matched natural enemies and diseases were left behind in the country of origin.

Three classic examples of alien invasive weeds in the United Kingdom (UK) are Japanese knotweed (Fallopia japonica) and giant hogweed (Heracleum mantegazzianum) introduced by plant collectors, horticulturalists and gardeners several hundred years ago in what must have seemed like a good idea at the time. They have since graduated into invasive weeds and now occupy significant areas of ecologically sensitive environments and ecosystems causing massive amounts of economic damage and equally costly to manage.

All three weeds have several things in common. They are of Asian origin and prefer damp and wet places. They have no natural predator insects or diseases in the UK which can exert any meaningful level of natural control. All three require dedicated herbicide application techniques for control using herbicides.

Even herbicide treatment will only manage rather than eradicate these weeds from the environment at large. The pervading nature of invasive weeds makes it difficult to easily and safely access treatment using standard herbicide application equipment. At risk are water-courses near to where these three species most frequently grow and valued plants including turf grasses near to and below these tall invasive weeds. Custom-designed herbicide applicators are required.

Dr Terry Mabbett looks at some of the weeds which were brought to this country many many years ago and have caused problems ever since.
Weeds are simply plants in the wrong place at the wrong time but some grow so quickly they can smother, swamp and oust virtually all other plants. They are by definition invasive weeds colonising a wide range of ecosystems and environments. Those invading most methodically and with the worst effects are invariably alien (exotic) plant species, now with a ‘free hand’ in a new environment, because all closely matched natural enemies and diseases were left behind in the country of origin.

Three classic examples of alien invasive weeds in the United Kingdom (UK) are Japanese knotweed (Fallopia japonica), Himalayan balsam (Impatiens glandulifera) and giant hogweed (Heracleum mantegazzianum) introduced by plant collectors, horticulturalists and gardeners several hundred years ago in what must have seemed like a good idea at the time. They have since graduated into invasive weeds and now occupy significant areas of ecologically sensitive environments and ecosystems causing massive amounts of economic damage and equally costly to manage.

All three weeds have several things in common. They are of Asian origin and prefer damp and wet places. They have no natural predator insects or diseases in the UK which can exert any meaningful level of natural control. All three require dedicated herbicide application techniques for control using herbicides.

Even herbicide treatment will only manage rather than eradicate these weeds from the environment at large.

The pervading nature of invasive weeds makes it difficult to easily and safely access treatment using standard herbicide application equipment. At risk are water-courses near to where these three species most frequently grow and valued plants including turf grasses near to and below these tall invasive weeds. Custom-designed herbicide applicators are required.
Introduction of Japanese knotweed as an ornamental plant for early Victorian gardens must have seemed like a good idea at the time, but the contemporary weed legacy for UK is huge and growing. Weed success is due to ability for rapid spread in situ through rhizomes, super active and resilient rhizomes, and efficient dynamic spread assisted by the nature of its favoured riparian and urban environments.

Dense growth of Japanese knotweed restricts access for riverbank inspection and increases flood risk through large quantities of dead stems and leaves washed into rivers and streams. Attempts to remove established stands from riparian areas may cause instability in river banks and increase the risk of soil erosion.

Urban infestations cause considerable damage to hard surfaces. Tarima is no problem for a weed that can force its stems through concrete.

Factors favouring and assisting dissemination of propagules is moving water on the one hand and human activity including soil excavation, movement into landfill and fly-tipping, on the other.

Severity and seriousness of Japanese knotweed is clear to see from the UK legislation used to try to limit its spread.

Japanese knotweed is on the list of Schedule 9 alien invasive species under the Wildlife and Countryside Act 1981, making it an offence to plant or cause it to grow in the wild. It is additionally classified as ‘Controlled Waste’ under the Environmental Protection Act 1990 and can be disposed of only at a licensed landfill site in accordance with the Environment Protection Act (Duty of Care) Regulations 1991.

Japanese knotweed is multi-faceted weed species

Red-coloured and spear-like aerial shoots emerge in spring, reaching 30 cm by April and proceeding to form a massive foliar canopy to 2-3 metres tall by summer’s end. Plants produce large numbers of white flowers in summer but hardly any viable seed, probably due to UK climate limitations on normal sexual reproduction. The species usually found in the UK is Fallopia japonica var. japonica, introduced from Japan two centuries ago.

Japanese knotweed continues to destroy ecosystems and urban infrastructure and is one of few herbaceous weeds demanding direct placement of herbicide inside the plant to ensure fast lasting control.

Application of herbicide is the only safe way to manage Japanese knotweed but this is easier said than done due to the sheer size and resilience of its rhizome. A number of herbicides notably glyphosate are effective but how much and for how long will depend on the application method used, which is the factor determining ultimate success of any chemical control programme against Japanese knotweed. Spraying with contact herbicide will burn off leaves but rhizomes survive drying or composting and produce new canes once in contact with water. Attempts to mechanically control during the only ‘knotweed-free window’ which is late autumn and winter. Dead stems and leaves decompose very slowly to form a deep litter that prevents germination of other seeds.

Failure to produce viable seed is more than compensated for by a fast growing and robust system of rhizomes, which provides this and other invasive weeds with the means to exploit and dominate environments and vegetative propagation for efficient spread.

Rhizome systems may extend up to seven metres from the parent plant and to a depth of three metres. Rhizome fragments down to 0.7g can generate new plants and pieces of fresh aerial stem will grow shoots and roots in soil or water. Plants can achieve up to three metres of aerial and six metres of rhizome growth in a single growing season.

New shoots arise from the tiniest pieces of rhizome and cut stem-sections root at the nodes, while crowns will survive drying or composting and produce new canes once in contact with water.

Attempts to mechanically control Japanese knotweed using strimmers, flails or diggers will inevitably aggravate its spread.

Application of herbicide is the only safe way to manage Japanese knotweed but this is easier said than done due to the sheer size and resilience of its rhizome. A number of herbicides notably glyphosate are effective but how much and for how long will depend on the application method used, which is the factor determining ultimate success of any chemical control programme against Japanese knotweed. Spraying with contact herbicide will burn off leaves but rhizomes survive drying or composting and produce new canes once in contact with water.

Attempts to mechanically control...
Research into discovery and development of insect pests and plant pathogens for commercial control is ongoing. This involves identification and collection of specimens in the weed plants’ centre of origin and developing formulations and application techniques for delivery as commercial biological control agents. That is the easy part. Obtaining permission to use biological control agents. That is the hard part.

Dense growth of Japanese knotweed restricts access for riverbank inspection and increases flood risk through large quantities of dead stems and leaves washed into rivers and streams. Attempts to remove established stands from riparian areas may cause instability in river banks and increase the risk of soil erosion.

Urban infestations cause considerable damage to hard surfaces. Tarmacadam is no problem for a weed that can force its stems through concrete.

Factors favouring and assisting dissemination of propagules is moving water on the one hand and human activity including soil excavation, movement into landfill and fly-tipping, on the other. Severity and seriousness of Japanese knotweed is clear to see from the UK legislation used to try and limit its spread.

Japanese knotweed is on the list of Schedule 9 alien invasive species under the Wildlife and Countryside Act 1981, making it an offence to plant or cause it to grow in the wild. It is additionally classified as ‘Controlled Waste’ under the Environmental Protection Act 1990 and can be disposed only at a licensed landfill site in accordance with the Environment Protection Act (Duty of Care) Regulations 1991.

Japanese knotweed is multi-faceted weed species

Red-coloured and spear-like aerial shoots emerge in spring, reaching 30 cm by April and proceeding to form a massive foliage canopy 2 to 3 metres tall by summer. Plants produce large numbers of white flowers in summer but hardly any viable seed, probably due to UK climate limitations on normal sexual reproductive development.

Above ground stems die back and dry out in autumn, but overwintering rootstock and rhizomes (underground stems) are so fast growing, being rootstock and rhizomes (underground stems) are so fast growing, that can force its stems through concrete. Many rhizome fragments down to 0.7g can generate new plants and pieces of fresh aerial stem will grow shoots and roots in soil or water. Plants can achieve up to three metres of aerial and six metres of rhizome growth in a single growing season.

New shoots arise from the tiniest pieces of rhizome and cut stem-sections root at the nodes, while crowns will survive drying or composting and produce new canes once in contact with water. Attempts to mechanically control the only sure way to dispatch Japanese knotweed but this is easier said than done due to the sheer size and resilience of its rhizomes. A number of herbicides notably glyphosate are effective but how much and for how long will depend on the application method used, which is the factor determining ultimate success of any chemical control programme against Japanese knotweed. Spraying with contact herbicide will burn off leaves but rhizomes survive and produce new stems. The only sure way to dispatch Japanese knotweed is to introduce systemically acting herbicide directly into the stems by filling the cut stems or injecting intact stems. Target area is the lower part of the aerial stem to minimize the distance for downward translocation into the rhizomes, the underground part of the stem. Best time is from late summer through autumn when rhizomes become the sinks for soluble food and nutrients translocated from the leaves before they senesce and fall off. Introduced systemic herbicide is subject to this same strong basipetal (downward) translocation of soluble chemicals into the rhizome system which is subsequently killed.
Himalayan balsam and giant hogweed require an ‘inside job’

Giant hogweed (Heracleum mantegazzianum) and Himalayan balsam (Impatiens glandulifera) are two alien (non-native) invasive weeds causing serious environmental damage across the UK. Both species are on the Schedule 9 list of alien invasive weeds under the Wildlife and Countryside Act 1981.

With a preference for damp waterside areas these plants spread quickly and easily via water-borne seed to present increased flood risk while crowding out native waterside flora. However, their hollow stems open them up to a highly targeted and environmentally benign delivery of herbicide using stem injection.

With pretty pink flowers, which start to appear in June, Himalayan balsam grows up to three metres tall to completely out-compete nearby native plants and dies back in autumn to expose large areas of bare soil. This makes river banks highly vulnerable to erosion form increased water flows during winter, thus increasing flood risk. Moreover, it reduces harborage, breeding sites and food supplies for native wildlife by obliterating native waterside flora. Seeds of the Himalayan balsam stay viable for two years or more. There’s nothing pretty about giant hogweed, growing up to five metres tall with huge flower heads (umbels) of several thousand seeds and around 50,000 seeds on every plant. Seeds are readily dispersed along watercourses and may remain viable for 10 years. Giant hogweed poses an additional inherent danger from photosensitive toxic chemicals (furanocoumarins) contained in the sap. They cause severe burning and blistering (photodermatitis) of contaminated skin which is subsequently exposed to the UV spectrum of natural sunlight. Only minute traces are required for this to happen and the toxic chemical will remain active for several hours after the stem has been cut.

Control of these weeds alongside water courses should be carried out on a catchment basis, working from the upstream end to prevent seed colonization.

Treatment should be delayed until plants have a sufficiently large stem diameter to allow easy and effective injection, but should be carried out before viable seed has been set and dispersed. Seed pods of Himalayan balsam start to ‘explode’ and disperse their seed in late July. Giant hogweed starts to flower in May with main period of seed set in late summer.

It is essential to establish and encourage growth of native plants as soon as possible after these alien invasive weeds have been controlled.

Sustainable chemical control requires light, portable, easy to use and cost-effective chemical applicators. High environmental sensitivity of riverside areas infested with these two weeds means herbicide spraying is not the most appropriate application option because it can lead to contamination and damage through spray drift, run-off and leaching. Safe and cost-effective control requires an ‘inside job’ made all the more easy and effective, because the relatively large diameter and not too compact stems allow easy and effective use of the stem-injection method.

Other alien invasive weeds

Japanese knotweed, Himalayan balsam and giant hogweed are some of the most high profile alien invasive weeds but some others just as well established or on the verge of becoming so.

Rhododendron ponticum, which originates in the Mediterranean region and has been around in the UK since the 18th century, is another well-established and damaging alien invasive weed. Ludwigia species (creeping water primrose/willow-leaved primrose) originating in South America is almost certainly the one to watch of the newest arrivals and those waiting in the wings.
Hand-operated applicators used for stem-injection and ‘stem cut and fill’ of the hollow stems with total systemically acting herbicides like glyphosate are the preferred weapons of choice. For stem injection a single shot (several ml) of herbicide is introduced into the hollow stem just below the first stem node up from soil level, as near as possible to the underground rhizome.

An alternative direct application option is wiping the outer surface of Japanese knotweed plants using hand-held weed-wiper applicators. This is carried out on flowering stems up to two metres in height during late summer.

Himalayan balsam and giant hogweed require an ‘inside job’

Giant hogweed (Heracleum mantegazzianum) and Himalayan balsam (Impatiens glandulifera) are two alien (non-native) invasive weeds causing serious environmental damage across the UK. Both species are on the Schedule 9 list of alien invasive weeds under the Wildlife and Countryside Act 1981. With a preference for damp waterside areas these plants spread quickly and easily via water-borne seed to present increased flood risk while crowding out native water-side flora. However, their hollow stems open them up to a highly targeted and environmentally benign delivery of herbicide using stem injection.

With pretty pink flowers, which start to appear in June, Himalayan balsam grows up to three metres tall to completely out-compete nearby native plants and dies back in autumn to expose large areas of bare soil. This makes river banks highly vulnerable to erosion form increased water flows during winter, thus increasing flood risk. Moreover it reduces harbourage, breeding sites and food supplies for native wildlife by obliterating native waterside flora. Seeds of the Himalayan balsam stay viable for two years or more.

There’s nothing pretty about giant hogweed, growing up to five metres tall with huge flower heads (umbels) of several thousand seeds and around 50,000 seeds on every plant. Seeds are readily dispersed along watercourses and may remain viable for 10 years. Giant hogweed poses an additional inherent danger from photosensitive toxic chemicals (furanocoumarins) contained in the sap. They cause severe burning and blistering (photoder-matitis) of contaminated skin which is subsequently exposed to the UV spectrum of natural sunlight. Only minute traces are required for this to happen and the toxic chemical will remain active for several hours after the stem has been cut.

Control of these weeds alongside water courses should be carried out on a catchment basis, working from the upstream end to prevent seed colonization. Treatment should be delayed until plants have a sufficiently large stem diameter to allow easy and effective injection, but should be carried out before viable seed has been set and dispersed. Seed pods of Himalayan balsam start to ‘explode’ and disperse their seed in late July.

Giant hogweed starts to flower in May with main period of seed set in late summer. It is essential to establish and encourage growth of native plants as soon as possible after these alien invasive weeds have been controlled.

Sustainable chemical control requires light, portable, easy to use and cost effective chemical applicators. High environmental sensitivity of riverside areas infested with these two weeds means herbicide spraying is not the most appropriate application option because it can lead to contamination and damage through spray drift, run-off and leaching.

Safe and cost effective control requires an ‘inside job’ made all the more easy and effective, because the relatively large diameter and not too compact stems allow easy and effective use of the stem-injection method.

Other alien invasive weeds

Japanese knotweed, Himalayan balsam and giant hogweed are some of the most high profile alien invasive weeds but some others just as well established or on the verge of becoming so. Rhododendron ponticum, which originates in the Mediterranean region and has been around in the UK since the 18th century, is another well established and damaging alien invasive weed. Ludwigia species (creeping water primrose/willow-leaved primrose) originating in South America is almost certainly the one to watch of the newest arrivals and those waiting in the wings.

There’s One Tool You Won’t Need When You Service Hunter Sprinklers!

The last thing a golfer wants to see is unsightly excavation scars from typical sprinkler maintenance. All Hunter Premium Golf Sprinklers feature TTS - Total Top Service, with all serviceable parts accessible from the top which helps keep your course looking great like nothing else can.
This spring’s unseasonably warm weather looks set to be a sign of things to come. So – asks Robert Jackson – can your golf course irrigation system take the heat or is it time to upgrade?

The unseasonably hot and dry spring weather has taken golf clubs across the UK by surprise in recent weeks, putting many an ageing and/or failing irrigation system to the test as a result.

If you’re one of the clubs that have limped through the last couple of summers with an inadequate system, it’s time to stop burying your head in the sand-bunker: either invest in a proper retrofit and remedial work, or budget for an all-new system.

Both are daunting steps in these economically difficult times, but are far better than having your existing system kick the bucket in the height of summer!

Let’s look at your options…

Retrofit and remedial work

Did you know that remedial work can improve an existing system’s efficiency by around 20%? By repairing or renovating, customers can make significant savings on ongoing operating costs as well as save on the expense of a new installation – something that makes perfect financial sense in these tough times.

If the wholesale replacement of your existing system just isn’t feasible, then it is possible to phase in a new system over time – though you will, of course, be limited by the pipe network you’ve already got.

For example: you could replace your mains and cabling in the first year; replace your pump system and tank the second year; and then, depending on your budget, put in a greens, tees and fairways system in the third year.

By carrying out the first two phases, you are free to ‘bolt-on’ greens, tees and fairways cover as and when you can, which offers a more cost-effective solution.

Sprinkler nozzles are also subject to wear, so something as simple as adequate maintenance and periodic replacement can bring about a dramatic improvement in the overall efficiency of your system. Because they need to be replaced every few years, manufacturers are constantly updating and improving their design and function, which means new nozzles will work at the very best flow and pressure whereas older nozzles will always become less uniform with age.

Remarkably, simply by renewing sprinkler nozzles, you can increase the efficiency of your system by up to 10% at the right pressure and flow.

With nozzles costing on average just £15 per head, this can be a highly cost-effective way of improving your system and is a job that can be carried out by the greenkeeping team.

Time to keep a weather eye on your irrigation