In overall terms, it is essential to look, holistically, at the course, all of it, wall to wall, top to bottom...firstly...

- Its routeing
- How is its length?
- Is it long enough?

Many are too long, extended in my view for the sake of it, for the sake of an ego, for the sake of marketing, or a “more is better” philosophy.

- How is its rhythm?
- How do the holes flow?
- How does it circumnavigate the plot?

Does it make good use of the topography...the vistas...the natural lie?

- How does it stir the emotions?

Many don’t have a good rhythm, a good flow or par-3s, 4s and 5s and the necessary balance and variety between them again, against par, against SSS.

And many courses just aren’t memorable. They may have the odd good hole – the signature, as the PR boys like to call it, but not enough “Wow!” to stand out among the competition. It must!

- And how is its safety?
- Internally?
- Externally?
- Are there danger points?

Many courses are unsafe because or not just too small a parcel of land on which they are laid out, particularly the old ones, but many are unsafe because there is inadequate separation between holes and boundaries – houses, roads and the like, and between holes themselves, between tees and greens, between greens and tees and some are a clear result of poor, myopic design and dangerous.

Golf balls do hurt a lot!

We can avoid accidents with sensible, thorough architecture! Most of the time!

Its components, most importantly.

- Are the greens big enough?
- Do they have enough pin positions – for maintenance, for variety, for challenge?
- Are the slopes, mounds mowable? – with reasonable ease, efficiency, safety?

Many, many fail in each respect.

- Are the putting surfaces testing?
- Have they good borrows?
- How is the sward?
- The rootzone?
Could go on and on asking the questions and, in a renovation exercise, one needs to.

And no less importantly, the tees.

- Are they big enough to take the wear, particularly the par-3s?
- Are they located correctly to maximise the strategy of each hole?
- Are there enough flights to give all levels of golfer a reasonable playing chance?
- And are they built properly with reasonable slopes which can be easily mown?

Even more questions that the golf course architect and the greenkeeper can ask of the course... and they should.

And the bunkering, which can contribute so much to the quality of the course.

- Are they in the right places or, in this day and age of progressive club and ball technology, redundant?
- Do they drain?
- What is the sand like – the right colour, depth, performance?
- Are the bunker mounds mowable?
- Do they look good?
- Do they allow reasonable forward play?

They need to fulfil all these. They must not frustrate.

And there are many more facets of the course which need to be looked at improved to make better play, better conditions, better maintenance and presentation.

The field drainage, the irrigation, the traffic routeing and its management – players and greenkeeping staff – The landscape and the environmental setting of the course.

All contribute to the maintainability of the course and to the efficiency... and economy of the greenkeeping effort.

Finally, I have to say that even if the structure of the course... its overall design, the performance of its components... is okay, or improved, the gloss needs to be put on it, to shine, to impress, to create that wow, that it needs to out perform its neighbour.

Routinely, it is the province of the greenkeeping team, but it is a matter of the course’s design and hand in hand with the golf course architect there is always the opportunity to frame the greens, the tees, the bunkering, the fairways with varied, contoured dimensions of mown grass, less mown grass and managed vegetation.

Designing for maintenance, perhaps, maintaining for design, perhaps, but together architecture and greenkeeping can make that vital difference in producing courses of real quality.

Howard Swan is one of Europe’s most senior and respected golf course architects. He is working in close to 30 countries on some new projects. Today not as many as yesterday, but on many renovations at home and abroad. He was President of the (now) European Institute of Golf Course Architects and has for almost 20 years conducted his design masterclass for BIGGA at Harrogate and around the country.

Swan Golf Designs Limited
www.swangolfdesigns.com
BSS are leading producers of mineral products for sport and leisure markets throughout the UK.

- Silica Sand
- Rootzones
- Eco Rootzones
- Top Dressings
- Gravels and Grits
- Pathway Aggregates

Our products are specifically designed to generate professional and high performance surfaces. Optimum accuracy and consistency of product is assured through advanced matching and testing procedures.

Tel: 0270 762828
www.bathgatesilica.co.uk

When quality counts...

...you need a complete, reliable and cost effective service.

Headland Amenity provides some unique products with some unique benefits backed by a unique support package.

For proven solutions to turf management issues, contact us today.

- Fertilisers & Micronutrients
- Bionutrients
- Wetters
- Turf Hardeners
- Disease, Pest & Weed Control
- Soil Treatments
- Adjuvants

Headland Amenity Products, Grass Agronomics
Telephone: 01223 607834 Email: info@headlandamenity.com Website: headlandamenity.com
GOOD SOIL BIOLOGY

The Answer to Practical Sustainability

By Martin Ward
Much of the discussion on how to design and implement sustainable practices, both financial and environmental in course management is about as effective as designing a two legged stool, because it concentrates on soil chemistry and physics and almost completely ignores the vital role played by soil biology in grass management.

In healthy grass systems the indigenous soil and soil biology provides the plant with all the chemistry it needs. True sustainability will never be achieved if we continue to override hundreds of millions of years of evolution.

The idea of applying minimal amounts of ammonium and ferrous sulphate for nutrition and hollow coring to remove thatch sounds reasonable at first hearing but, is in fact seriously flawed. It may work on those special few fescue dominant links courses which need very little nutrition but practical experience shows that when applied to heavily trafficked parkland courses is almost certainly destined to fail.

Ammonium sulphate and ferrous sulphate are mostly made by combining ammonia (a toxic gas) or scrap iron with concentrated sulphuric acid in temperatures over 800°C. These products have salt indices of 69 and 85 respectively. Repeated additions of mineral salts kills the soil biology and creates many of the problems that take up the greenkeepers working day and much of their budget.

To apply 100Kg N per hectare as ammonium sulphate means you apply a salt equivalent of about 350Kg. Iron accumulation is partly responsible for the black compacted soil, iron bands, aggregated fines forming root breaks and concentrations of iron oxides familiar to all green keepers. In excess it has fungicidal properties and as we shall see beneficial fungi are essential for fine grasses, root growth, nutrient retention, low disease and friable free draining soil.

Until recently, overlooking soil biology was due to lack of knowledge. But commercial laboratories now analyse soils for all the groups of microbes that make up healthy soil and compare the types of bacteria, fungi nematodes and protozoa that live under the different grasses found on golf courses.
We often hear comments like, “there are lots of bugs in turf rootzones” and in many cases there are, but not necessarily the correct microbes to grow fescue or bent in low input, disease-free conditions. When sports turf rootzones are analysed, you often find the biology to grow Poa annua and plant pathogens which is very different to that needed for healthy perennial grasses to thrive.

So how do we develop the correct soil biology for sustainable fine grass management and how does it work?

Growth without fertiliser

First we have to understand how nutrients get into the soil without added fertiliser.

Grass produces a huge amount of energy via photosynthesis. In fact, grass feeds the planet providing the world with most of its proteins and carbohydrates through flour, meat and milk. Grass however leaks about 50% of its proteins and carbohydrates underground. In chemically managed systems most of this energy is wasted but it is this energy that must be used to grow healthy perennial grasses.

As grass grows as a natural part of its metabolism it leaks proteins and carbohydrates through its roots, bacteria live around the root system feeding on this nutrient and fix nitrogen from the air. Protein also contains a lot of nitrogen. When the bacteria in turn get eaten by protozoa or nematodes higher up the soil food web they excrete ammonium which is recycled back to the plant providing the grass with the nitrogen it needs.

With a healthy soil food web you only need to stimulate photosynthesis by aeration or applying very low amounts of potassium, nitrogen or even iron to get lots of nutrient leaking from the roots. Sustainability is converting this nutrient to ammonia to ensure a constant supply of nitrogen is available for grass growth. It is quite possible to grow Agrostis on a USGA specification rootzone using less than 40Kg N per hectare per year.

Reducing fertiliser use

Research has shown (publications in STRI Journal July 1997) that grass inoculated with mycorrhizal fungi grows better in low nutrient conditions. All new constructions should be inoculated with mycorrhiza to ensure low fertiliser inputs. Mycorrhizal grass absorbs water and nutrient much more effectively reducing fertiliser and irrigation costs.

Get the chemistry right

Biology and chemistry must be managed together. Golf greens and tees are designed to maximise drainage at the expense of high fertiliser input and leached nutrient. Best practice chemistry and biology are overlooked in the design and build. To reduce fertiliser inputs there are several simple steps the course manager can take to improve soil chemistry by increasing cation exchange capacity (CEC) and base saturation.

Essentially, CEC measures the potential of soil to hold on to positively charged nutrient ions and base saturation measures the proportions of these alkaline (base) nutrients that are actually in the soil. The main alkaline positive ions in the soil are calcium, potassium, magnesium and sodium. Another essential positive ion is ammonium.

Opposites attract so the higher the CEC i.e. the more negative ions in the soil, the greater the amount of the essential plant nutrients that will be held in the soil.

In most soils the majority of negative ions are on clay and humus, both in very short supply in a new USGA or 80/20 rootzone. All good agronomists and fertiliser suppliers will analyse soil for CEC and base saturation and it is very easy and inexpensive to add calcium, magnesium and potassium in the correct ratios to ensure that the soil contains adequate base cations instead of other common cations such as hydrogen, aluminium and iron. CEC can be increased by adding zeolites or naturally by degrading thatch and converting it to humus and at this point we need to discover just how important thatch is to sustainable management.

Thatch is a friend

Thatch is part of the foundation for healthy grassland soil, everybody knows dead grass degrades and releases nutrient but it does so for four very important reasons involved with:-

1. The promotion of fine grasses over Poa annua.
2. Providing resistance against plant diseases.
3. Ensuring soil friability and therefore good drainage and oxygen transfer.
4. Increasing the CEC and nutrient holding capacity of the soil.
i.e. the key elements for sustainable grass management with minimum surface disruption.

Soil fungi degrade thatch and can easily be introduced; there is no need for aggressive hollow coring and top dressing with sterile rootzone, unless the rootzone does not drain. Apart from the physical disruption, financial cost, loss of income and the simple fact that most members won’t allow it aggressive hollow coring and top dressing is counterproductive to sustainable management.

Growing perennial grasses

Poa annua is genetically programmed to seed and die for a very good reason. Annual seeding plants form the first stages of plant species progression; they colonise bare or compromised soils then in time perennial grasses, shrubs, deciduous trees or coniferous forest will colonise the soil. Perennial grasses predominate when the grass is cut or grazed.

New or bare soils can be quite sterile as there is no thatch to feed fungi and bacterial levels are quite low so Poa annua has growth mechanisms and a shallow root system that rely on the limited bacteria in the soil. Poa annua puts most of its energy into producing seed and relatively little goes underground to associate with mycorrhizae or to feed the supportive food chain (which is why poa annua needs more fertiliser than other grasses).

When poa annua dies, thatch is formed and this is food for fungi and a more complex soil food web can now form that supports perennial grasses.

If you weigh the bacteria and fungi found around the root system of Poa annua there is about 10 x more bacteria than fungi and little or no mycorrhizal fungi in the root systems.

However around the root systems of fescues or agrostis in healthy soil you find approximately equal amounts of bacteria and fungi and mycorrhizal colonisation of the root system.

So why does nature start with poa annua and develop fescues and bents while many golf courses do the opposite? Thatch is the preferred food for fungi so biological thatch degradation will provide the fungal dominant conditions needed for perennial grass growth.

The mineral salts in inorganic fertilisers and anaerobic conditions caused by water logging or compaction and excessive use of fungicides kill fungi and create the bacterial dominant conditions for Poa annua.

Fescue and Agrostis without stress

You do not have to stress poa annua to convert a green from poa annua to fine grass. Create a fungal dominant soil by degrading thatch to feed fungi, colonise the roots with mycorrhizae, use the root exudates as a source of nitrogen so reducing the use of inorganic salts, do not overwater and perennial grasses will grow.

Disease management

Fungal diseases attack weak plants and in the majority of cases it is unrealistic to provide blemish free surfaces without occasional use of fungicides. However, beneficial fungi and bacteria in the thatch layer and rootzone play a major role in limiting disease. There are four natural mechanisms that turf managers can use to reduce the incidence of disease.

1. Mycorrhizal fungi, soil fungi and bacteria recycling root exudates provide a protective barrier around the root physically preventing pathogens from attacking the root.
2. Some soil fungi and bacteria will eat pathogens to prevent them from killing the host plant.
3. A high population of beneficial fungi in the thatch and soil will competitively exclude many pathogens.
4. Some soil microbes produce toxins that kill pathogens, this is the basis for many of the new strobilirium fungicides.

Nematodes

Many courses report damage by root feeding nematodes. This is a symptom of poor soil. In a healthy soil food web predatory nematodes will eat root feeders. There are many more beneficial nematodes than root feeders. They play an essential role in creating healthy soil. Image of predatory nematode eating a root feeding nematode is shown on the cover, and on pages 24-25.

Healthy Soil

Healthy sandy soil is a rich brown friable mix with lots of air and no compaction.

This contrasts starkly with older golf greens which often have a number of root breaks caused by top dressing on old turf, a build up of fines and iron to form a pan, chemical build up and black layer, general compaction or just poor construction.

Good soil biology creates friable soil that requires less physical disruption and top dressing. Again, it is fungi and beneficial nematodes that do the job. Bacteria and fungi produce polysaccharides, which help soil to aggregate, while fungal hyphae move through the soil followed by fungal feeding nematodes which break up the soil forcing the particles apart creating air space. The nematodes create small channels coated in excreted ammonium creating ideal conditions for root hairs and roots to penetrate. This in turn breaks down soil pans and root breaks releasing locked-up nutrient for plant growth.

The great advantage of using microbes to create friable soil is that you do not have to hollow core to replace your biologically active root zone, with its high CEC and correct base saturation ratios - with sterile topdressing.

Turn thatch into plant food

Remove thatch physically, compost it and you get humus rich compost full of trace elements and macro nutrients. Degrade it in situ and you get the same results without the physical disruption and the costs of top dressing, labour, machine use and course closures; giving financial sustainability. Thatch will degrade with thatch reducing microbes, moisture and oxygen.

Some swards have a biomass of thatch degrading fungi and bacteria to do the job, but you may need to use a commercial inoculant or compost teas. Reputable suppliers will guarantee their thatch eating microbes. Sorrel rolling, scarification or new liquid aeration technologies will provide the oxygen required in all but the most horrendous thatch without major disruption.

Sustainability

When thatch degrades, nutrients are released and humus is created which increases CEC and reduces the need for inorganic fertilisers allowing the soil biology to thrive. Soil biology converts the proteins and carbohydrates released by the plant through its roots into ammonia and plant food. Thatch provides food for fungi creating the fungal dominant food web needed for perennial grasses. Fungi and nematodes create a friable open root zone. Plants are healthy and disease is excluded except under very high stress.

This is the path to sustainability.

About the Author

Martin Ward is Managing Director of Symbio
Tel: 01428 685762
email: martin@symbio.co.uk

Anyone with views on Martin’s article can email scott@bigga.co.uk, or discuss the issues raised, on the website: www.bigga.org.uk
The BIGGA/GCMA Safety Management System, sponsored by Ransomes Jacobsen, has been developed to:

- Make golf clubs safer
- Introduce best practice
- Standardise Health & Safety throughout golf
- Reduce costs for golf clubs

Why do you need a Safety Management System?

Because:

- It incorporates all your legal requirements to comply with Health & Safety Legislation
- Clubs have responsibilities
- There are penalties for not complying – up to £20,000 fine and/or course closure
- Golf clubs are hazardous places to work

The Safety Management System contains help and guidance to enable golf clubs to:

- Set a Health & Safety Policy
- List hazards and assess risks
- Plan for the future
- Introduce audit and review procedures

The Safety Management System is accessed through the Members area of the BIGGA website (www.bigga.org.uk) and the GCMA website (www.gcma.org.uk)

sponsored by

RANSOMES JACOBSEN
A Textron Company
THE BIGGA MEMBERSHIP SURVEY

An unprecedented number of you took part in BIGGA’s on-line survey over Christmas and the information gleaned from the results has been extremely useful to the various departments at Headquarters. This will be used to help shape BIGGA’s direction and policy in the future.

We have highlighted some of the more interesting results here...

What were your reasons for joining BIGGA?

There are many factors which members cite for joining BIGGA. The support of a Professional Association, networking opportunities and courtesy golf are some of the main reasons. The Master Greenkeeper Certificate is also a huge incentive.

Why do you regularly attend BIGGA Educational Seminars and Courses?

This gives a clear picture that BIGGA members attend events to update their skills, to find out what’s new and for general interest as well as the opportunity to network with other greenkeepers.

What prevents you from attending BIGGA Educational Seminars and Courses?

The results of this question show that many members feel that they do not have the time to attend educational events and that they are too far away.
Are you aware that, upon request, bespoke training can be provided by HQ in your Section?

This indicates that we still have some work to do in promoting the bespoke training services provided by BIGGA.

Are you aware of the funding opportunities available to you?

Awareness of funding shows an even split for the funding opportunities that BIGGA offers as well as the Government supported Train to Gain scheme.

Who pays your subscription?

Over two-thirds of members have their subscriptions paid by the golf club or company where they are based.

Are you aware of the training aids available from BIGGA?

The awareness of the training aids offered by the Association is good, however we need to continue to promote the services and ensure that they continue to be available to members.

How useful are the following items in Greenkeeper International?

BIGGA Members rate the coverage of Technical Articles as the most useful part of the magazine. The table shows the percentage of members (with actual quantity in brackets) who rate each section as Useful or Very Useful. More than half of those who responded find each part of the magazine useful!