APPROVED COLLEGES FOR GREENKEEPER TRAINING

Surely the best way to invest in the future is to invest in people. Training and education are the greatest motivating factors. A more articulate and educated workforce will inevitably lead to greater rewards and an awareness and recognition of the greenkeepers profession.

- Langside College
 Buchanan Drive,
 Rutherglen, Glasgow,
 Scotland.
 Contact Colin Urquhart

- Lancashire College
 Myerscough Hall
 Bilsborrow
 Preston
 Lancs
 Contact Richard Gibbs

- Teagasc National Botanic Gardens
 Glasnevin, Dublin 9
 Ireland.
 Contact Pat Suttle

- Welsh College
 Northop
 Mold
 Clwyd
 Wales
 Contact Graham Wright

- Oaklands College
 St. Albans,
 Herts.
 Contact Ian Merrick

- Cannington College
 Cannington, Bridgwater,
 Somerset
 Contact Nick Rigden

- Elmwood College
 Cupar, Fife, Scotland.
 Contact Carol Borthwick

- Oatridge Agricultural College
 Ecclesmachan, Broxburn,
 Scotland.
 Contact Quentin Allardice

- Cheshire College of Agriculture and Horticulture
 Reaseheath, Nantwich, Cheshire.
 Contact Dennis Mortram

- Askham Bryan College
 Askham Bryan, York.
 Contact Nick Bisset

- Warwickshire College
 Moreton Morrell,
 Warwick.
 Contact Hugh Nunn and Roy Nelson

- Sparsholt College
 Sparsholt,
 Hants.
 Contact Bob Young

The Greenkeepers Training Scheme has appointed thirteen colleges in Britain and Ireland as Centres of Excellence for Golf Greenkeeper Training.
control it, but also produces proportionately more dead material in the
turfed mechanically by verticutting or grooming. The nett result is an
increased build up of surface thatch and all the ill-effects which follow. Princi-

weakened from winter disease attack and wear and tear of play always pro-
vives better in such poor growing conditions.

Fertiliser treatment should therefore be restricted to low nitrogen feeds'
The natural colour of a healthy brown top and fescue sward is a very
cut of surface thatch and all the ill-effects which follow. Princi-

perfectly adequate growth can be maintained and the grasses we want to

usual, a lawn sand type dressing in fairly early spring when there are spells of

have got to get away from the idea that green in relation to turfgrasses is

to low nitrogen feeds and,

usually a lawn sand type dressing in fairly early spring when there are spells of

natural growth can be maintained and the grasses we want to

mild weather, which allow some growth, will be appropriate. Back this up with

and additional quantities from applied fertiliser are unnecessary. On particular-

use of fertiliser in turf culture is only one aspect of management and, for suc-

provide a quick boost and so the cycle of deteriora-

we have to get away from the idea that green in relation to turfgrasses is

brown top and fescue sward is a very

ease monitoring the correct method of application, which is

To use fertiliser in turf culture is only one aspect of management and, for suc-

as being well adapted to infertile soils low in

natural growth can be maintained and the grasses we want to

natural growth can be maintained and the grasses we want to
With greenkeepers countrywide praying for rain, it was perhaps out of character that Regional Chairman Gordon Child and members of the South West and South Wales region should pray for sunshine on May 1st, the big day in the calendar when Westurf '91 takes place at Long Ashton GC. Following two brilliantly warm and sunny years, it was disappointing that this third event should herald in such damp and dismal weather, but what Mother Nature failed to provide was more than compensated for by the sort of enthusiasm that is all to plain to see in these laid-back parts, where it takes more than a chill wind to cool spirits.

Growing bigger each year in dealer participation, this year saw some 103 stand spaces occupied, an increase of more than 20 on 1990 and almost double that of 1989. Whilst National and International manufacturing companies saw it more as an inexpensive shop window - a fine way of showing and demonstrating equipment and of meeting potential buyers, a PR exercise if you like - suppliers with an established locally based clientele expressed pleasure in writing worthwhile orders and in meeting most of their customers in one fell swoop. Throughout the day spirits remained high; the weather eventually brightened; greenkeeper met greenkeeper to exchange confidences and a good time was had by all. A quizzing of exhibitors by your editor indicated satisfaction with their day and all felt that the event serves to fill a gap - made more noticeable by the move to Peterborough by the IOG - in serving the South West. Indeed, IOG were themselves on parade and appeared suitably impressed. The highly competitive price of stand space is seen as a distinct bonus and all look forward to Westurf '92. Organiser Gordon Child indicated a substantially larger headcount through the gates and the Training Colleges - Sparsholt and Cannington - both seemed swamped with enquiries and looked to be in deep discussion with prospective students whenever I was around.
Delicate watering...but it creates a splash of colour!

Wright Rain irrigation adds a hidden dimension to the appearance of any golf course. The wide choice of pop-up sprinklers providing a growing freshness to tees, fairways and greens, bringing appreciation from green keepers and club members alike. We offer a total package, including sophisticated control systems, which operate automatically to suit the exact requirements of the course. Our experts will advise on the choice of equipment, complete and commission the installation and provide full service support. Contact the address below and see how Wright Rain irrigation is designed to improve your game.

RINGWOOD, HAMPSHIRE, BH24 1PA
Telephone: (0425) 472251
Fax: (0425) 472258

Nine pages of specialist reports cover

Are we ready for another drought? Undoubtedly, this question hangs on the lips of every greenkeeper, with water conservation issues of such national importance. Consultant Agronomists JOHN HACKER and MIKE HARBRIDGE conclude their observations on irrigation with some timely advice on estimating water needs.

Despite the rain and snow we had this winter it is more than likely that certain parts of Britain will be in drought again this summer. For those of us who get our water supplies from lakes and reservoirs, there is usually more than enough rainfall. This year, however, even in the North West, the reservoirs were still not full at the beginning of March. In southern regions where water is taken from underground aquifers, rainfall was still below average before Christmas. It was only the January rainfall which led to drought orders being removed in certain regions.

Whilst we do not know how much it will rain in the future, it is clear that reserves are lower than normal. If we get another dry summer we may be restricted in the use of water sooner than we would like. Getting irrigation rates correct not only ensures a green course but conserves water supplies for everyone.

'How much water should I apply' is perhaps THE question on every greenkeeper's mind. Indeed, it is the most difficult to answer because there are so many variables which need to be taken into account - many of which the greenkeeper cannot control. Here are the major points which need to be considered before irrigation of greens, tees or fairways.

To be able to estimate water requirements for turf it must first be known at what stage a lack of water becomes detrimental to grass growth and survival. To allow soil water to deplete so much that the grass dies (permanent wilting point) would obviously be foolish. However, should the soil be kept at field capacity, the point at which soil is most susceptible to destructuring and compaction? Clearly there exists a midpoint when adequate growth will occur without the extreme repercussions of either too much or too little water.

Unfortunately, little research has been undertaken on this subject in Britain although some has been conducted abroad. For the British greenkeeper the most common, and subjective, method of water requirement is a visual assessment. This is based on the reaction of the grass plant to water stress and the experience of the greenkeeper. Drought symptoms include:

• A darkening of grass colour.
• Footprinting - grass taking time to stand up again after being walked upon.
• Reduction in grass clipping production.
• Localised drought on high spots prior to droughting in other areas.

By using these visual warnings and by examining soil cores the experienced greenkeeper can make an estimate of when water may be needed. However, it is difficult for him to know how much is needed or indeed whether stress was caused to the grass before the drought symptoms were noticed and water applied.

To be able to predict drought we need to be able to measure the depletion in soil water before it causes visual symptoms to occur. Fortunately there are several ways of measuring this:

• Monitoring the Soil Moisture Deficit (SMD) - the amount of water necessary to bring the soil back to field capacity.
• Using soil tensiometers.
• Using soil electrical resistance sensors.
Irrigation • Water-injection cultivation • Storing water • ...and the seasonal issue:

DROUGHT

- Using heat sensors.
- Using the plant.

All of these methods allow you to apply water at a predetermined deficit or tension. However, knowing what that predetermined level should be for a given location poses a real problem.

Soil moisture deficit
The Ministry of Agriculture has found that the growth of agricultural grass swards is reduced once the SMD exceeds 25mm and is substantially reduced at 50mm deficit on soils. So once the SMD is between 25-50mm it is necessary to irrigate to bring the SMD back above 25mm but not to field capacity (zero SMD). True, this has been suggested for agricultural grasses and its suitability for golf green swards is open to question. However, it’s the best guide-line for SMD we have so far. How then can the SMD be estimated? The usual way is to compile a Water Balance Sheet.

Water balance sheet
A water balance sheet (see diagram) attempts to balance water inputs (rainfall) with water losses (evapotranspiration, or ET). The difference between the two will be shown as either drainage or run-off (if rainfall is greater than ET), or as the SMD (if ET is greater than rainfall).

Rainfall can be measured by the greenkeeper on site or obtained from the local weather station. The ET can be taken from MAAF reference book 435 and adjusted weekly with the known value for potential transpiration – available from the Met Office through ADAS. Some irrigation systems use a mathematic equation to determine an estimated ET rate based on climatic data.

An SMD figure should be predetermined at which irrigation is to be applied, for instance the greenkeeper can decide to apply 25mm of water when the SMD reaches 35mm. This will return the soil to 10mm SMD, which is below field capacity but high enough to prevent drought symptoms from occurring. Research from abroad has suggested that 60%-65% of nett evaporation should be applied as irrigation. For instance, if the rainfall for a week (say 15mm) is deducted from the evaporation for that same week (say 75mm) then the nett evaporation would be 60mm. Applying 65% of this would mean irrigating with 39mm of water during the following week. In the first example of a SMD of 35mm this would mean applying 22.75mm of water.

In the diagram, hypothetical gains and losses of water have been monitored from spring, showing a SMD on July 1st of 30mm. Showing the gains and losses for one week, there is an initial loss of 5mm in the first two days, taking the SMD over the 35mm mark, at which point the greenkeeper decides to irrigate the next day. On the 3rd day a further 2.5mm of water is lost through ET but the greenkeeper applies 25mm of irrigation. This takes the SMD up to 12.5mm and 15mm the next day. On the 5th, 6th and 7th a total of 25mm of rain falls which, after the estimated ET has been deducted, takes the SMD above zero. Clearly, once the soil has regained field capacity it cannot hold more water against drainage and so the 2.5mm excess drains off leaving the SMD at zero.

Perhaps the most accurate sensor of both soil water and atmospheric conditions is the grass plant itself. Visual assessment of the turf is the most common way the greenkeeper determines whether water is needed. If this assessment can be accurately measured in some way by machine then the system can

<table>
<thead>
<tr>
<th>Date</th>
<th>Rainfall (mm)</th>
<th>Estimated H-R Daily ET</th>
<th>SMD (mm)</th>
<th>Excess Drainage run-off (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brought forward</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 1</td>
<td>0</td>
<td>2.5</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>July 2</td>
<td>0</td>
<td>2.5</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>July 3</td>
<td>0</td>
<td>2.5</td>
<td>2.5</td>
<td>25</td>
</tr>
<tr>
<td>July 4</td>
<td>0</td>
<td>2.5</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>July 5</td>
<td>10</td>
<td>2.5</td>
<td>-7.5</td>
<td>0</td>
</tr>
<tr>
<td>July 6</td>
<td>8</td>
<td>2.5</td>
<td>-5.5</td>
<td>0</td>
</tr>
<tr>
<td>July 7</td>
<td>7</td>
<td>2.5</td>
<td>-4.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Clay soil: holds a lot of water and cracks when dry; Drought symptoms: footprinting on a tee
If your existing golf course irrigation system is giving you problems because of age, lack of maintenance or out-dated design - or indeed, you are considering the purchase of a new system, a word with the professionals at Turf Irrigation Services can both solve your problems and help you achieve your objectives.

Firmly established as leaders in the UK's major sports turf markets, Turf Irrigation Services offer you professional advice, professional design alternatives, professional installation standards - and equally important, a professional after sales service including long term contract maintenance.

For an objective, professional opinion, simply telephone, write or fax Turf Irrigation Services. Do it now.

TURF IRRIGATION SERVICES
BETCHTON, SANDBACH, CHESHIRE
CW11 0TS PHONE: 0477-500255
FAX: 0477-500404
be automated. Infrared thermometry has been developed to do just this in a non-destructive way, measuring the leaf temperature which, when the soil is moist, will be at or near ambient soil temperature. Leaf temperatures will rise above air temperatures when soil or atmospheric stress increases. Only recently developed, it may however prove to be the most accurate way of determining water stress within the plant itself, rather than trying to predict plant needs from soil moisture content.

Water use rate

In view of the limited information given by soil sensors alone, the Water Use Rate (WUR) has been used in the USA to estimate requirements. The WUR is composed of the total ET plus the total amount of water required for turfgrass growth.

The weekly WUR for a northern temperature region of the USA having moderate summer temperatures and humidities has been estimated at between 0.9-1.0 inch/week (22-25mm/week). Many factors will affect these estimates including:

- Evapotranspiration rate
- Length of growing season
- Growth rate
- Turfgrass species or cultivar
- Intensity of culture
- Intensity of traffic
- Soil type
- Rainfall
- Available soil moisture.

However, to estimate the total amount of irrigation water that might be needed per season, the weekly WUR multiplied by the number of growing weeks will give an estimated annual water rate. This can be compared to the known annual rainfall for an area, the difference being the expected deficit or excess of water.

This is still only an estimate, as differences will occur from area to area and year to year. Knowing the estimated WUR will, however, help when planning how much water may be needed throughout a season in a given climate zone.

How much water to apply

How much to apply at any one time will depend on many factors. The general consensus is that the irrigation period should be sufficiently long to wet the majority of the soil where the roots grow (usually between 100-200mm deep). So how much water to use will depend on the amount of water in the soil, the soil texture, and how quickly the water gets into the soil (the infiltration rate). If irrigation water...
Detailed information is needed

27°C starts to run-off then irrigation should be stopped for a while to allow the water in the soil to move downwards. It may be beneficial to lightly spike or slit the surface to encourage infiltration. On soil showing dry patch symptoms a wetting agent may also help.

Light infrequent water applications can lead to surface rooting, which in turn can lead to a need for more water. Water throughout the rootzone is necessary for a deep-rooted green – the benefits of which include:

- Less frequent watering
- More efficient use of plant nutrients
- A more drought and wear resistant sward.

If you are not in a position to calculate the exact amount of water required then the rule of thumb as advocated by McIntyre is probably best: "water grass as deeply as possible as infrequently as possible without causing damage to the grass".

Light sprays of water may however be used to syringe grass, under very hot conditions, to prevent heat stress or discourage diseases associated with such temperatures i.e. brown patch. To do this, water is applied during the hottest period of the day so that it rapidly evaporates causing the desired cooling effect.

When should you irrigate?

Having decided the grass needs water and how much to apply, this ideally should be applied when evaporation is at its lowest; when the area is not subjected to heavy play; when it will not interfere with play; when the air is relatively calm i.e. not windy; and so as not to extend the length of time when grasses are susceptible to diseases.

These criteria would suggest that early morning would be best – before play begins. Alternatively, if the area is particularly exposed and subject to winds, then late evening when it is often calm may be more appropriate. On many courses, other constraints such as the lack of an automatic system, will affect when water is applied. Indeed, water may have to be applied throughout the day if you are restricted to using mobile sprinklers causing inconvenience to players. Even with pop-up systems there is little time for irrigation at night in the summer, when play may continue until 10pm and begin again at 5 or 6am.

What really happens

So what do greenkeepers do in practice to determine when to irrigate?

In Britain, irrigation is usually applied after visual assessment by the greenkeeper. Drought is far less common in the UK than in continental Europe or the USA and, because of this, much less money is spent on systems and their control. In the US, where drought is a regular occurrence, much more effort is put into applying the correct amount. This is probably because many more courses there have the finances to install automatic systems, often linked by computer into moisture monitoring systems which can give much more precise control of water application.

In the future, when the price of water may be much higher, it may well pay even the British greenkeeper to monitor water use. What is certain is that more detailed information on irrigation requirements for this country will be needed, if water is to be applied with confidence. Until then irrigation in the UK will remain something less than a precise practice.

Golf course irrigation?

CHOOSE THE SOUTH's SPECIALISTS...

Yes, if your club is considering up-dating or extending its present irrigation system or you are thinking of investing in this important "Greenkeeper's Aid", have a word with ISS.

Established for over a decade, ISS have years of experience of golfcourse irrigation systems design, installation and maintenance - this experience is yours for the asking. ISS will gladly visit your course for a chat - phone or write to them now!

IRRIGATION SYSTEMS & SERVICE

Unit 6, The Bourne Centre, Salisbury Business Park
Southampton Road, Salisbury, Wiltshire
Telephone: (0722) 412510
Rain is like a policeman – never there when needed. We can change all that. We can make it rain on your golf course at the touch of a button. We can arrange for your course to be watered at night when conditions are just perfect, or when you need to apply fertilizer or top dressing or indeed at any time to suit you.

Our name is somewhat longer than the Almighty and we have not been in the business quite as long, but we are very good at it and very reliable.

We are:

NORTH STAFFS IRRIGATION COMPANY
Ivy Mill, Longton Road, Stone, Staffordshire ST15 8TB.
Telephone: 0785 812706
Fax: 0782 395734

A family firm with over twenty years experience (ten as our own company)

We design, supply and install irrigation systems.

Maintenance contracts available within the Home Counties and the London area

Call Mr. or Mrs. Laker
Tel (0903) 724545. Mobile (0831) 200072
Flanderblade Ltd., 20 Whiteacre, Littlehampton, West Sussex, BN17 7JA
FULL MEMBER OF BTIA
Heralding Water Injection Cultivation, a technical breakthrough

A major problem in golf course management until now has centred on the need to find the right balance between maintaining quality and flexibility of greens and the pressure to keep putting surfaces playable. This problem has been compounded by the fact that since traditional core aeration is stressful to the turf, it can usually only be applied in spring and autumn when recovery is most rapid.

A new technique developed by Toro now offers all the advantages of conventional methods – without the drawbacks. Known as water-injection cultivation (WIC), it offers less stressful and more effective cultivation, thereby ensuring greater flexibility in turf management.

The main complaint about core aeration is the disruption it causes to the putting surface. Player complaints and green committee pressure have often forced many Clubs to cut back or eliminate aeration, with an inevitable negative impact on the quality of such greens. Even when aeration is carried out, the benefits can disappear long before the procedure can be repeated. Recent University research in the USA has shown that the effects of spring hollow-core tining are almost gone by August.

Unlike conventional methods, water-injection cultivation does NOT disrupt the putting surface. Entry holes, in fact, are almost invisible shortly after treatment. As a result, aeration programmes can be continued and expanded.

The benefits of what happens below the surface are equally significant. Water injection cultivation penetrates twice as deep as hollow-tine techniques. This offers two major advantages. One is the potential for increased root penetration resulting in a stronger plant. The second is the penetration of the compaction pan that may develop as the result of repeated cultivation to a uniform depth.

It should be noted that water-injection cultivation is not designed to replace conventional core aeration, since coring...