Turf diseases

When and where to look and how to identify them

Dr Terry Mabbett looks at the five most common turf diseases in the UK and offers advice on how to identify, or more ideally avoid, them.

Fine turf suffers from a surprisingly large number of different diseases given the limited number of grass species involved and the minimal amounts of grass, stem and leaf available for infection by plant pathogenic fungi.

The inherent nature of fine turf and the management practices required to maintain the close-cut condition as a professional playing surface is why fine turf is susceptible to disease. By the same token it becomes difficult to distinguish between different turf diseases and non-disease situations on such tiny areas of stem and leaf.

A fuller appreciation of the factors which pre-dispose turf to disease can help turf managers spot problems early on by knowing when and where to look. Fungi responsible for turf disease are invariably present as saprophytes living on dead and decaying plant debris comprising the thatch at the base of the turf grass. Thatch exists at varying depths and densities depending on turf grass species and the extent to which it is controlled. Thatch is a vital component within the turf grass system imparting springiness to playability and player comfort but simultaneously harbouring disease, holding moisture and generating humidity to provide ideal conditions for infection.

By nature fine sports turf suffers wear and tear and, therefore, stress from acute and chronic damage during normal every-day use. Laceration, bruising and soil compaction all contribute to increased disease susceptibility. For instance, anthracnose (Colletotrichum cereale) often starts as a discrete spot of diseased grass where the fungus has invaded leaves and is left bruised when just a golf ball lands on the green.

Mowing to maintain turf grass at optimum heights for premium playability, according to species composition, function (green, tee, fairway) and the time of year, is the core of turf management. But the very act of mowing opens up the surface to fungal entry via the cut surfaces of grass stems and leaf blades at which cooting drops of nutrient-rich sap provide ideal infection sites.

Microdochium nivalis the causal fungal pathogen of Fusarium patch uses these easy points of entry especially when mower blades are recently set leaving jagged rather than clean-cut ends. Mowing of heavily infected turf can spread Microdochium inoculum (spores and mycelium) across the turf especially if set with resulting infection patterns contributing to wheel movements. Cutting hard or firm turf injures grass plants a regular basis and removes any fungus that was on or inside the clipping. Mowing also takes away nutrients that were inside the severed leaf ends. Need to replenish nutrients lost in this way is one key reason why sports turf requires a continuous balanced regime of nutrition.

Plant nutrition and disease are closely related and turf grass is no exception. Plant health and resilience to disease is essentially a question of your ground continuity and nutrient balance. Simply unrip- ping the fertiliser bag in spring and autumn may simply accentuate any imbalance and aggravate thatch residing fungi like Microdochium nivalis and Colletotrichum cereale into action.

Fusarium patch on the golf course is clearly exposed and pre-disposed to disease. Due thought and consideration given to these facts about fine turf should help turf managers on the lookout for diseases. Knowing when and where to look is as important as deciding what pathogen is responsible by allowing early identification and, therefore, timely action.

Fusarium patch is still the 'top dog' disease of fine turf in the United Kingdom. Over 90 per cent of greenkeepers are reckoned to encounter Fusarium patch during any one year. Eighty per cent of all fungicide applications are targeted at Fusarium irrespective of the disease range quoted on the fungicide product label.

Fusarium patch can appear at any time. Prime times are spring and autumn when grass growth is most vigorous and environmental conditions are most conducive to infection, disease development and spread, and especially autumn when turf recovering from stress inflicted by summer-season traffic adds yet another dimension to overall disease susceptibility. Over-enthusiastic application of nitrogen based fertilizer is another factor making spring and autumn prime times for Fusarium.

The disease typically appears as orange-brown water-soaked patches some 2.5 to 5.0cm wide. Under ideal conditions including prolonged high humidity and surface wetness, and failing prompt remedial action application fungicide with some curative action, these can quickly coalesce to cover large areas of turf.

Fusarium patch (Agrostis). Others including fuscos are susceptible, especially under snow cover or just after snow has melted when the pathogen is most active and therefore less discerning of turf grass species. Different species susceptibility to Fusarium Patch is largely down to thatch with Poa annua and Agrostis classed as moderate to high thatch-forming grasses.

Golf courses receiving substan-
tial snow cover in most years may find this the worst time for Fusarium. Symptoms are more specific and characteristic with obvious orange-brown rings surrounding a pale straw coloured central area with a distinct pink tinge, hence the alternative common name of Pink Snow Mould for infections occurring at this time. Some key pre-disposing factors for Fusarium are:

- Deep dense thatch with high water holding capacity and humid microclimate.
- Excess nitrogen available during mild and moist autumn conditions generating lush grass growth and high pathogen activity
- Periods of prolonged high humidity and/or surface wetness and impeded drainage
- Inaccurate mowing practice, potentially cutting blades which tear rather than cut the grass.

Anthracnose

Basal (crown) rot of annual meadow grass appearing during a late autumn window was the only type of anthracnose that UK greenkeepers traditionally had to contend with. More recently the Colletotrichum cereale pathogen has stepped up a gear, starting earlier in the year and extending its disease activity into a broader range of turf grass species.

In addition to basal rot anthrace- nose UK greenkeepers now face ‘folar blight’ first appearing as

Basal rot anthracnose

Red thread disease

Fusarium

Dollar spot

Basal (crown) rot of annual meadow grass appearing during a late autumn window was the only type of anthracnose that UK greenkeepers traditionally had to contend with. More recently the Colletotrichum cereale pathogen has stepped up a gear, starting earlier in the year and extending its disease activity into a broader range of turf grass species.

In addition to basal rot anthracnose UK greenkeepers now face ‘folar blight’ first appearing as anthracnose.
Turf diseases

When and where to look and how to identify them

Fine turf suffers from a surprisingly large number of different diseases given the limited number of grass species involved and the minimal amounts of grass, stem and leaf available for infection by plant pathogenic fungi.

The inherent nature of fine turf and the management practices required to maintain the close-cut condition as a professional playing surface is why fine turf is susceptible to disease. By the same token it becomes difficult to distinguish between different turf diseases and non-disease infections on such tiny areas of stem and leaf.

A fuller appreciation of the factors which predispose turf to disease can help turf managers spot problems early on by knowing where and when to look. Fungi responsible for turf disease are invariably present as saprophytes living on dead and decaying plant debris comprising the thatch at the base of the turf grass sward.

Thatch is exposed by varying depths and densities depending on turf grass species and the extent to which it is controlled. Thatch is a vital component within the turf grass sward imparting springiness for playability and player comfort but simultaneously harbouring disease, holding moisture and generating humidity to provide ideal conditions for infection.

By nature fine sports turf suffers wear and tear and, therefore, stress from acute and chronic damage during normal every-day use. Laceration, bruising and soil compaction all contribute to increased disease susceptibility. For instance, anthracnose (Colletotrichum cereale) often starts as a discrete spot of diseased grass where the fungus has invaded leaves and is left bruised when golf balls land on the green. Mowing to maintain turf grass at optimum heights for premium playability, according to species composition, function (green, tee, fairway) and the time of year, is the core of turf management. But the very act of mowing opens up the award to fungal entry via the cut surfaces of grass stems and leaf blades at which oozing drops of nutrient-rich sap provide ideal infection sites.

Microdochium nivale the causal fungal pathogen of Fusarium patch uses these easy points of entry especially when mower blades are incorrectly set causing jagged rather than clean-cut ends. Mowing of heavily infected turf can spread Microdochium inoculum (spores and mycelium) across the turf especially if wet resulting in infection patterns and circular movements.

Cutting turf injuries grass plants a regular basis and removes any fungicide that was on or inside the clipping. Mowing also takes away nutrients that were inside the severed leaf ends. Need to replenish nutrients lost in this way. It is one key reason why sports turf requires a continuous balanced programme of nutrition.

Plant nutrition and disease are closely related and turf grass is no exception. Plant health and resilience to disease is essentially a question of your round continuum in nutrient balance. Simply unap- pliying the fertiliser bag in spring and autumn may simply accentuate any imbalance and aggravate thatch residue fungi like Microdo-

Fusarium

Basal rot anthracnose

Dr Terry Mabbett looks at the five most common turf diseases in the UK and offers advice on how to identify, or more ideally avoid, them.

As a late autumn window was the core of turf disease, holding moisture and generating humidity to provide ideal conditions for infection sites. Any one year. Eighty per cent of all encounters Fusarium irrespective of the disease range quoted on the fungicide product label.

Fusarium patch can appear at any time. Prime times are spring and autumn when grass dynamics and environmental conditions are most conducive to infection, disease development and spread, and especially autumn when turf recovering from stress inflicted by summer-season traffic adds yet another dimension to overall disease susceptibility. Over-enthusiastic application of nitrogen-based fertilizer is another factor making spring and autumn prime times for Fusarium.

The disease typically appears as orange-brown water-soaked patches some 2.5 to 5.0cm wide. Under ideal conditions including prolonged high humidity and surface wetness, and failing prompt remedial action iaplication fungicide with some curative action, these can quickly coalesce to cover large areas of turf.

Poa annua (annual meadow grass) is the most susceptible species followed by bent grasses (Agrostis). Others including fescues are susceptible, especially under snow cover or just after snow has melted when the pathogen is most active and therefore less discerning of turf grass species. Differing species susceptibility to Fusarium Patch is largely down to clath with Poa annua and Agrostis classed as moderate to high thatch-forming grasses.

Golf courses receiving substantial snow cover in most years may find this the worst time for Fusarium. Symptoms are more specific and characteristic with obvious orange-brown rings surrounding a pale straw coloured central area with a distinct pink tinge, hence the alternative common name of Pink Snow Mould for infections occurring at this time. Some key pre-disposing factors for Fusarium are:

- Deep dense thatch with high water holding capacity and humid microclimate.

Red thread disease

- Excess nitrogen available during mild and moist autumn conditions generating lush grass growth and high pathogen activity
- Periods of prolonged high humidity and/or surface wetness and impeded drainage
- Inaccurately set mower blades which tear rather than cut the grass.

Anthracnose

Basal (crown) rot of annual meadow grass appearing during a late autumn window was the only type of anthracnose that UK greenkeepers traditionally had to contend with. More recently the Colletotrichum cereale pathogen has stepped up a gear, starting earlier in the year and extending its disease activity into a broader range of turf grass species. In addition to basal rot anthracnose UK greenkeepers now face ‘fistill blight’ first appearing as

Dollar spot

- Excess nitrogen available during mild and moist autumn conditions generating lush grass growth and high pathogen activity
- Periods of prolonged high humidity and/or surface wetness and impeded drainage
- Inaccurately set mower blades which tear rather than cut the grass.

Fair rings

- Excess nitrogen available during mild and moist autumn conditions generating lush grass growth and high pathogen activity
- Periods of prolonged high humidity and/or surface wetness and impeded drainage
- Inaccurately set mower blades which tear rather than cut the grass.
early as July at the height of the summer season. This new dimension has elevated anthracnose into the second most important disease after Fusarium on UK turf.

The ‘seeds’ of basal rot anthracnose are sown in summer on deep thatched turf stressed out from seasonal wear and tear on compacted soil, but symptoms of disease do not appear until autumn. Coincidently October weather encourages the anthracnose fungus out of its saprophytic existence on thatch to infect living Poa annua plants refreshed by rain and flushed with fertiliser.

Basal rot on Poa annua begins with infection of the older leaves on the crown. They go yellow and then orange/red to produce water soaked bases on the infected grass tillers which become easy to pull out. Later formation of dark spore-containing structures appear as black stained areas at the base of the plant which is why the disease is called ‘anthracnose’ (means like coal).

Poa annua is the only species acutely susceptible to basal rot so greenkeepers with a high proportion of annual meadow grass on greens should be on ‘autumn watch’ for anthracnose especially if ‘starving out’ of Poa annua is part of an on-going management programme.

Compacted summer swards with too deep and dense thatch are similarly the source and origin of anthracnose foliar blight. Only difference being in that foliar blight develops straightaway. The disease is triggered by summer rainfall and irrigation water impeded by thatch and dry water-repellent soil and therefore unable to percolate through to the root zone. As a result the water remains on the surface and gets soaked up by thatch to create high humidity and ideal conditions for fungal infection and development of foliar blight.

Turf patches blighted by this form of anthracnose are yellow at first and then brown with affected grass becoming dull and darkened in appearance as spore-bearing structures mature. Subsequent transfer of disease to previously healthy areas is by spores spread by rain splashes, wind, on wheels and footwear. Annual meadow grass and creeping bent swards are prime targets with smooth-stalked meadow grass (Poa pratensis) and creeping red fescue (Festuca rubra) significantly affected.

Anthracnose is a self-perpetuating turf disease. Tififers and plants killed by basal rot and leaves destroyed by foliar blight add to and stoke up thatch thereby offering even more opportunities for Colletotrichum cereale as a saprophyte. Factors pre-disposing turf to anthracnose attack are similar to those for Fusarium

Dollar spot

Fusarium patch and anthracnose are first and second in UK turf disease rankings but most smart money is on dollar spot to become disease of the future. This view is based on experience from North America and Sclerotinia homoeocarpa being a warm season pathogen, cropping up in mid to late summer and lasting through to early autumn when soil fertility and turf vitality is at lowest ebb.

If widely predicted UK climate change materialises, with earlier springs, warmer summer temperatures and extended autumns, this fungal pathogen will be presented with more favourable environmental conditions and turf grass species with reduced vitality and rootzone fertility. Sclerotinia homoeocarpa, like the pathogen responsible for Fusarium patch and anthracnose, ‘tades away and hitches a ride on thatch’ but this pathogen prefers low nitrogen soils and swards. Dollar spot appears as small tan coloured spots usually the size of a 1 US dollar coin, round and rarely larger than 7.5cm wide. Dollar spot must often affects Poa annua although additionally attacks bent grasses and annual meadow grass.

Red thread

Red thread is fast becoming the Cinderella’s turf disease being dwarfed by Fusarium and anthracnose and overlooked by current interest in dollar spot. However, red thread is widely spread amongst turf grass species including fine leaf fescues, especially red fescue (Festuca rubra), and perennial Ryegrass (Lolium perenne). Like dollar spot, red thread is a warm season disease appearing in summer and extending with ease through autumn and often into mild winters. Like dollar spot red thread thrives on nitrogen deficient turf.

Red thread is one of the easier diseases to recognise due to its distinct pink to reddish hue and colourations expressed in the foliar symptoms as the common name suggests. Overall symptoms appear as ill-defined patches of bleached grass with close inspection revealing pink mycelium viable under the thatch layer to where it is needed in the rootzone.
morning dew cover. Extending from the tips of leaf blades is red-needle or straw-like structures that become brittle and break on drying to spread red thread into new areas. But nothing is as simple as first seems. What is commonly called red thread is a disease complex involving two distinct fungal pathogens but quite easily distinguished in situ using a hand lens or magnifying glass. Leotia farinacea is responsible for the red needle thread extending from the leaf blades and Lighthouse roseipes is characterised by pink tinged gelatinous mycelium and cottony ‘fairy turves’ of spores visible under early morning dew cover and more correctly called ‘Pink Patch’. The two pathogens require similar conditions and are often found together.

Fairy rings

Fairy rings are mired in mystery and mystique both in folklore and science. Unlike the classic folklore of fairy rings having an indirect and accidental role on turf, what’s more there are three distinct types generally designated Type 1, 2 and 3.

Fairy rings ‘disease’ is caused by Basidiomycete fungi in the rootzone restricting the availability of water and nutrients. That said fairy rings downgrade turf through disfiguring symptoms and spore bearing structures (toadstools or puffballs) appearing in circles just as the name implies.

Type 1 – recognised by a circle of dead or dying grass inside a larger band of dark-coloured grass and due to toxins produced by Marasmius oreades in the rootzone. Damage to grass is aggravated by a thick layer of thatch fungal mycelium inside the rootzone of the affected turf that prevents sufficient water from above percolating down to the roots. Net result is complete death of the affected ring of grass and eventual appearance of reddish tan to buff coloured toadstools or ‘taps’ arranged in ring.

Type 2 – characterised by a ring of visibly stimulated grass growth in which toadstools may appear at particular times of the year. Not as damaging as Type 1 since it does not kill the grass but still leaving disfiguring scars on close mown turf. Type 2 is particularly prominent and damaging during long hot summers when the dark bands or ‘ribbons’ of stimulated grass stand out within turf that otherwise lacks colour. Type 2 fairy rings are generally caused by Lycoepedyon fungi producing physiologically active chemicals that stimulate grass growth.

Type 3 – most easily recognised by the prominent circle of stand-alone toadstools or puffballs with no visible effect on the associated ring of grass, either through toxins killing plants (Type 1) or chemicals stimulating grass growth (Type 2). Type 3 is caused by different fungi including Hypogrybus and is the easiest type of fairy rings to live with, being temporarily removed during mowing.

No easy task

Experienced greenkeepers can instinctively recognise and identify the main diseases of turf, just like my first GP could do with childhood diseases. Already in his seventies and practicing since the turn of the twentieth century he could stand at the bedroom door and tell a mother what disease her child was suffering from. Naturally he would examine the patient to confirm his initial diagnosis from a distance, just as a greenkeeper will get down ‘on all fours’ to inspect his turf and consult his local agronomist or turfurer.

The situation for younger and less experienced greenkeepers is altogether different. Dealing with diseases in fine sports turf is much more difficult than crops in agriculture. The farmer inspecting wheat, which is essentially a grass allowed to grow naturally and completely, is looking at a sufficiently large leaf area that allows him/her to observe discrete and easily identifiable disease symptoms.

The greenkeeper does not have that luxury being essentially reduced to looking at fine turf in its entirety for spots or patches of discoloured and dying grass. That is why guideline descriptions for turf disease are generally reduced to simple statements like ‘round straw coloured patches’. That one straw coloured patch, whether caused by a fungus or associated with parasitic nematodes, is very much like another is clearly cause for confusion and misidentification. Insect pest damage and even spilt mower fuel can add to the confusion. What’s more wear and tear involving play and unauthorised traffic, which may include the public with dogs delivering toxic urine and even foams, can further complicate an already confusing situation with additional ‘straw coloured patches’.

Of course there is always the local distributor at hand to offer an expert opinion and only too pleased to provide something in a bottle to solve the problem. If in doubt always ask for a second opinion but I would additionally invest in a microscope and some basic knowledge of microscopic slide preparation and fungus staining techniques. With this facility at his/her fingertips the greenkeeper is now inside an altogether different disease dimension, able to observe for himself/herself mycelium, spores and spore bearing structures that he/she otherwise could only reach out. From them on identification with the help of a sound text book on turf pathogens and diseases is not rocket science. Given the quality of contemporary turf management courses and teaching I would be surprised if most young and academically qualified greenkeepers have not already been introduced to these basic techniques in plant pathology. They allow greenkeepers to be more resourceful and not totally reliant on the turf ‘technician man’.

The seeds of diseases that cause or exacerbate turf damage lie in the soil. Although fungicides can be effective against many fungal pathogens, the control of fungal disease is difficult as the disease is almost always soil borne with the exception of fusarium, which can be cultured from the seed. The greenkeeper can do little to control the soil borne disease except maintain healthy soil and create a healthy turf.

ABOVE/LEFT: The seeds of diseases that cause or exacerbate turf damage lie in the soil. Although fungicides can be effective against many fungal pathogens, the control of fungal disease is difficult as the disease is almost always soil borne with the exception of fusarium, which can be cultured from the seed. The greenkeeper can do little to control the soil borne disease except maintain healthy soil and create a healthy turf.

LEFT: Most mainstream turf pathogens are in the mix at the base of the turf grass mound as a saprophytic ‘manure’ of existence (Picture Dr Terry Mabbett)

BELOW: Identifying diseases on fine turf is complex and takes time and expertise but is a worthwhile task rather than dealing with diseases on all grass. (Picture Dr Terry Mabbett)

FEBRUARY 2012
morning dew cover. Extending from the tips of leaf blades is red-needle or strand-like structures that become brittle and break on drying to spread red thread into new areas. But nothing is as simple as it first seems. What is commonly called red thread is a disease complex involving two distinct fungal pathogens but quite easily distinguished in situ using a hand lens or magnifying glass. Laetissaria fuciformis is responsible for the red needles (threads) extending from the leaf blades and Limonomyces roseipelatus is characterised by pink tinged gelatinous mycelium and cottony, tawny tufts of spores visible under early morning dew cover and more correctly called Pink Patch. The two pathogens require similar conditions and are often found together.

Fairy rings

Fairy rings are mired in mystery and mystique both in folklore and nature. Unlike the classic foreboding foliar diseases fairy rings have an indirect and incidental effect on turf. What’s more there are three distinct types generally designated Type 1, 2 and 3. Fairy rings ‘disease’ is caused by Basidioscyphaceae fungi in the root zone restricting the availability of water and nutrients. That said fairy rings downstage turf through disguising symptoms and spore bearing structures (toadstools or puffballs) appearing in circles just as the name implies.

Type 1 - recognised by a circle of dead or dying grass inside a larger band of dark-coloured grass and due to toxins produced by Marasmius orares in the rootzone. Damage to grass is aggravated by a thick layer of dark fungal mycelium inside the rootzone of the affected turf that prevents sufficient water from above percolating down to the roots. Net result is complete death of the affected ring of grass and eventual appearance of reddish tan to buff coloured toadstools or ‘caps’ arranged in ring.

Type 2 – characterised by a ring of visibly stimulated grass growth in which toadstools may appear at particular times of the year. Not as damaging as Type 1 since it does not kill the grass but still leaving disfiguring scars on close mown turf. Type 2 is particularly prominent and damaging during long hot summers when the dark bands or ‘ribbons’ of stimulated grass stand out within turf that otherwise lacks colour. Type 2 fairy rings are generally caused by Lycoperdon fungi producing physiologically active chemicals that stimulate grass growth.

Type 3 – most easily recognised by the prominent circle of stand-alone toadstools or puffballs with no visible effect on the associated ring of grass, either through toxins killing plants (Type 3) or chemicals stimulating grass growth (Type 2). Type 3 is caused by different fungi including Hypogrophorus and is the easiest type of fairy rings to live with, being temporarily removed during mowing.

No easy task

Experienced greenkeepers can instinctively recognise and identify the main diseases of turf, just like my first GP could do with childhood diseases. Already in his seventies and practicing since the turn of the twentieth century he could stand at the bedroom door and tell a mother what disease her child was suffering from. Naturally he would examine the patient to confirm his initial diagnosis from a distance, just as a greenkeeper will get down ‘on all fours’ to inspect his turf and consult his local agronomist or specialist. The situation for younger and less experienced greenkeepers is altogether different. Dealing with diseases in fine sports turf is much more difficult than crops in agriculture. The farmer inspecting wheat, which is essentially a grass allowed to grow naturally and completely, is looking at a sufficiently large leaf area that allows him/her to observe discrete and easily identifiable disease symptoms.

The greenkeeper does not have that luxury being essentially reduced to looking at fine turf in its entirety for spots or patches of discoloured and dying grass. That is why guideline descriptions for turf disease are generally reduced to simple statements like ‘round straw coloured patches’. That one straw coloured patch, whether caused by a fungus or associated with parasitic nematodes, is very much like another is clearly cause for confusion and misidentification. Insect pest damage and even spilt mower fuel can add to the confusion. What’s more wear and tear on all fours to inspect his turf and consult his local agronomist or specialist is no easy task. Of course there is always the local distributor at hand to offer an expert opinion and only too pleased to provide something in a bottle to solve the problem. If in doubt always ask for a second opinion but I would additionally invest in a microscope and some basic knowledge of microscopic slide preparation and fungus staining techniques. With this facility at his/her fingertips the greenkeeper is now inside an altogether different disease dimension, able to observe for himself/herself mycelium, spores and spore bearing structures that he/she otherwise only read about.

From then on identification with the help of a second text book on turf pathogens and diseases is not rocket science. Given the quality of contemporary turf management courses and teaching I would be surprised if most young and academically qualified greenkeepers have not already been introduced to these basic techniques in plant pathology. They allow greenkeepers to be more resourceful and not totally reliant on the turf ‘medicine man’.

The greenkeeper does not have that luxury being essentially reduced to looking at fine turf in its entirety for spots or patches of discoloured and dying grass. That is why guideline descriptions for turf disease are generally reduced to simple statements like ‘round straw coloured patches’. That one straw coloured patch, whether caused by a fungus or associated with parasitic nematodes, is very much like another is clearly cause for confusion and misidentification. Insect pest damage and even spilt mower fuel can add to the confusion. What’s more wear and tear on all fours to inspect his turf and consult his local agronomist or specialist is no easy task. Of course there is always the local distributor at hand to offer an expert opinion and only too pleased to provide something in a bottle to solve the problem. If in doubt always ask for a second opinion but I would additionally invest in a microscope and some basic knowledge of microscopic slide preparation and fungus staining techniques. With this facility at his/her fingertips the greenkeeper is now inside an altogether different disease dimension, able to observe for himself/herself mycelium, spores and spore bearing structures that he/she otherwise only read about.

From then on identification with the help of a second text book on turf pathogens and diseases is not rocket science. Given the quality of contemporary turf management courses and teaching I would be surprised if most young and academically qualified greenkeepers have not already been introduced to these basic techniques in plant pathology. They allow greenkeepers to be more resourceful and not totally reliant on the turf ‘medicine man’.

The greenkeeper does not have that luxury being essentially reduced to looking at fine turf in its entirety for spots or patches of discoloured and dying grass. That is why guideline descriptions for turf disease are generally reduced to simple statements like ‘round straw coloured patches’. That one straw coloured patch, whether caused by a fungus or associated with parasitic nematodes, is very much like another is clearly cause for confusion and misidentification. Insect pest damage and even spilt mower fuel can add to the confusion. What’s more wear and tear on all fours to inspect his turf and consult his local agronomist or specialist is no easy task. Of course there is always the local distributor at hand to offer an expert opinion and only too pleased to provide something in a bottle to solve the problem. If in doubt always ask for a second opinion but I would additionally invest in a microscope and some basic knowledge of microscopic slide preparation and fungus staining techniques. With this facility at his/her fingertips the greenkeeper is now inside an altogether different disease dimension, able to observe for himself/herself mycelium, spores and spore bearing structures that he/she otherwise only read about.

From then on identification with the help of a second text book on turf pathogens and diseases is not rocket science. Given the quality of contemporary turf management courses and teaching I would be surprised if most young and academically qualified greenkeepers have not already been introduced to these basic techniques in plant pathology. They allow greenkeepers to be more resourceful and not totally reliant on the turf ‘medicine man’.

The greenkeeper does not have that luxury being essentially reduced to looking at fine turf in its entirety for spots or patches of discoloured and dying grass. That is why guideline descriptions for turf disease are generally reduced to simple statements like ‘round straw coloured patches’. That one straw coloured patch, whether caused by a fungus or associated with parasitic nematodes, is very much like another is clearly cause for confusion and misidentification. Insect pest damage and even spilt mower fuel can add to the confusion. What’s more wear and tear on all fours to inspect his turf and consult his local agronomist or specialist is no easy task. Of course there is always the local distributor at hand to offer an expert opinion and only too pleased to provide something in a bottle to solve the problem. If in doubt always ask for a second opinion but I would additionally invest in a microscope and some basic knowledge of microscopic slide preparation and fungus staining techniques. With this facility at his/her fingertips the greenkeeper is now inside an altogether different disease dimension, able to observe for himself/herself mycelium, spores and spore bearing structures that he/she otherwise only read about.

From then on identification with the help of a second text book on turf pathogens and diseases is not rocket science. Given the quality of contemporary turf management courses and teaching I would be surprised if most young and academically qualified greenkeepers have not already been introduced to these basic techniques in plant pathology. They allow greenkeepers to be more resourceful and not totally reliant on the turf ‘medicine man’.

The greenkeeper does not have that luxury being essentially reduced to looking at fine turf in its entirety for spots or patches of discoloured and dying grass. That is why guideline descriptions for turf disease are generally reduced to simple statements like ‘round straw coloured patches’. That one straw coloured patch, whether caused by a fungus or associated with parasitic nematodes, is very much like another is clearly cause for confusion and misidentification. Insect pest damage and even spilt mower fuel can add to the confusion. What’s more wear and tear on all fours to inspect his turf and consult his local agronomist or specialist is no easy task. Of course there is always the local distributor at hand to offer an expert opinion and only too pleased to provide something in a bottle to solve the problem. If in doubt always ask for a second opinion but I would additionally invest in a microscope and some basic knowledge of microscopic slide preparation and fungus staining techniques. With this facility at his/her fingertips the greenkeeper is now inside an altogether different disease dimension, able to observe for himself/herself mycelium, spores and spore bearing structures that he/she otherwise only read about.

From then on identification with the help of a second text book on turf pathogens and diseases is not rocket science. Given the quality of contemporary turf management courses and teaching I would be surprised if most young and academically qualified greenkeepers have not already been introduced to these basic techniques in plant pathology. They allow greenkeepers to be more resourceful and not totally reliant on the turf ‘medicine man’.