Earthworms have both beneficial and harmful effects on fine sports turf. If you like, this makes them both baddies and goodies. The good news is that by going about their daily business, worms tunnel through the soil and give much needed aeration. The bad news is that some species, actually only two or three of the twenty or so found in Britain, come to the surface to cast. This causes the unsightly heaps of which we are all aware.

So how can we prevent the harmful effects of the baddie earthworms, while encouraging the benefits provided by the ones in the white hats? Well, a knowledge of their life cycles, plus knowing when and why they cast can help with a sensible approach to their control. The first point to note is that in any healthy soil, whatever may be growing, earthworms are present in abundance. This is particularly true in undisturbed turf, which unlike annually cropped land is not regularly disturbed by ploughing or cultivating. Up to one million worms per hectare were recorded in trials conducted at the Sports Turf Research Institute.

All these earthworms naturally are very hungry. They eat virtually anything organic, including living and dead plant and animal material. Thatch formed under fine turf is one of their favourite feeding places. So if you control earthworms too thoroughly by chemical means you could finish up with a worse build-up of thatch. If you add the benefits they give from improving soil aeration and structure, their general activity is beneficial. But the difficult trick is to balance this with the suppression of surface casts.

The three worms which cast are the two Allolobophoras species longa and nocturna and the common Lumbricus terri-stris. Like most earthworms, their activity is worst in heavy soils containing a large reserve of organic matter, and least on lighter, well-drained turf like the greens of links golf courses. Moisture also plays a part and casting is always more prevalent in moist springs and autumns than in a dry summer, when worms go deep down in the soil to avoid the effects of drought. At this time they go into a form of suspended animation, waiting for moisture to return. Obviously, this is less likely under heavy irrigation.

The damage caused by casts is obvious, but not always fully appreciated. They are unsightly, ruin the true running of a green, suppress grass growth, spoil surface drainage and encourage fungus disease, whilst the excreted fine soil particles make ideal weed seed-beds. After a wet winter, unless they are swept up, the casts can lead to muddy playing conditions all winter.

Finally, all earthworms, but especially those that live near the surface, also encourage moles – I speak with a lawn currently looking a bit like a miniature version of the western front. So, as most greenkeepers would agree, casting worms must be controlled. Adopting the right cultural measures will help; quite a lot can be achieved, for example, by regularly discouraging the production of the thatch, which gives the casting species a near-surface source of bed and board. A regular programme of sitt- ing and coring where it is needed is therefore important, coupled with the removal of grass clippings and restriction in the use of organic surface dressings.

Earthworms also dislike acid conditions, so be careful of over-liming and in naturally chalky conditions use acidifying fertilisers like sulphate of ammonia and sulphate of iron. In a wet, heavy soil further improvements to the drainage system are also worth considering.

In past years, a number of different chemical pesticides were used to kill earthworms. These were usually aimed at the whole population, casters or not – I don’t think in those days we knew the difference. These included mercuric chloride, lead arsenate, copper sulphate, sodium hypochlorite and potassium perman-ganate. Some of these are very nasty materials indeed and at least two of them may by law no longer be sold for any horticul-ture use. Apart from the now totally banned lead arsenate, which gave control for up to two years but also killed off most other soil organisms, most had a short-term effect and needed repeat treatment.

Mowrah meal was a much safer alternative to all these and was used widely for earthworm control until about 25 years ago. Broadcast dry, it needed watering into the turf with a copious amount of water by hose pipe. After a fairly short period the worms came wriggling up to the surface, quickly died and could then be brushed up and removed.

This treatment undoubtedly helped to control a lot of worms, most of them sub-surface and probably casting species. The effect could be seen for up to two seasons. But it used a lot of mowrah meal, up to eight ounces per square yard was the recommendation, and thorough watering-in was needed to gain full effect. Removing the bodies, which otherwise could make an even worse playing hazard than casts, was another tedious oper-ation. Therefore, as older greenkeepers will remember, all in all, applying mowrah meal was a very time consuming process. The organic matter left from this bulky material might itself also have helped encourage another generation of sub-surface feeding species.

In more recent years chlordane has been a successful succes-sor to mowrah meal. The two forms available were the liquid Sydane 25 and Sydane Granular. It was relatively safe to apply, controlled worms for a fairly long period, but has been decreed to be excessively harmful environmentally. So, as most green-keepers will now be aware, official approval for sale and supply ceased on 31 December 1990, and storage and use for earthworm control ceased to be permitted after 31 December 1992. After this date, unused stocks of chlordane should have been destroyed.

Fortunately, we have approved alternatives. One of the most useful is a mixture of gamma-HCH with thiodanate-methyl, which controls both earthworms and leatherjackets – a consider-able bonus where they are troublesome. It is sold as Castaway Plus and is available in normal flowable and CDA formulations. The makers also claim that it gives selective control of casting worm species.

Another modern approved replacement is the carbamate insecticide carbarly, sold in flowable formulation as Twister Flow by Rhône-Poulec. Carbarly is a pesticide with a wide range of uses as an insecticide, even for use against head lice!

The length of activity of the modern wormicides is usually less than older materials like lead arsenate, which also helps make them more environmen tally friendly’
over winter you might decide not to bother. In that case you must be prepared to deal with any weed seedlings growing the following year in the convenient seed-bed the casts have left for them.

But I suspect that many greenkeepers on heavier, wetter soils, especially if they are chalky, will find it pays them to apply wormicides as a fairly regular treatment. It will also pay to remember the benefits from the goodie, non-casting worms and try to limit the control of the baddies to only what is strictly necessary. One day we might have a chemical that is guaranteed to distinguish between the two. Until then, care and caution appear to be the watchwords.

The author, Geoffrey Ellis, is an independent consultant and writer with some 30 years experience in the agro-chemical industry. He runs a small nursery specialising in the production of wild flowers.

FIGHTING THE FUNGUS

In an ideal world we would never have any problems with fungus attacks on the golf course if healthy and vigorous turf, with good disease resistance, could be maintained by careful cultural management to shrug off disease. Then there would be no need to use chemicals to keep down pathogenic organisms. However, very few are blessed with the ideal golf course turf, especially on greens, where fungal attacks are most likely to occur and cause damage and where sustaining uniformity and density is vital year-round.

This is not to say that courses which do not have disease-resistant turf on greens (ideally fescues and bent grasses, carefully managed for growth, sited on healthy, well-structured, free-draining soil, out in the open air to produce a stable system) should not practise good cultural control of disease. Indeed, this is essential if reliance on chemical control is to be kept to the minimum. Whilst there is a range of fungicides available for treatment of turfgrass diseases, the range is not limitless: chemical applications are expensive and any input of chemicals into the environment should be avoided if possible. It is always best not to have to deal with disease in the first place and the use of fungicides should be a line of last resort.

The principle of good cultural practice is to create an environment in which disease is less likely to occur. Again, management to encourage disease resistant species within the turf has to be a primary consideration, looking for good aeration and free drainage, together with careful control of fertilizer input, application of irrigation and timing of top dressings. This latter item is a frequent means of encouraging autumn diseases, when year-end dressings are applied late and cause some smothering of the swards at a time when top growth is slow and the grasses are damp.

In the same vein, operations to promote drying of the grass cover are always valuable. The switching of surface moisture is always best not to have to deal with disease in the first place and the use of fungicides should be a line of last resort.

In an ideal world we would never have any problems with fungus attacks on the golf course if healthy and vigorous turf, with good disease resistance, could be maintained by careful cultural management to shrug off disease. Then there would be no need to use chemicals to keep down pathogenic organisms. However, very few are blessed with the ideal golf course turf, especially on greens, where fungal attacks are most likely to occur and cause damage and where sustaining uniformity and density is vital year-round.

This is not to say that courses which do not have disease-resistant turf on greens (ideally fescues and bent grasses, carefully managed for growth, sited on healthy, well-structured, free-draining soil, out in the open air to produce a stable system) should not practise good cultural control of disease. Indeed, this is essential if reliance on chemical control is to be kept to the minimum. Whilst there is a range of fungicides available for treatment of turfgrass diseases, the range is not limitless: chemical applications are expensive and any input of chemicals into the environment should be avoided if possible. It is always best not to have to deal with disease in the first place and the use of fungicides should be a line of last resort.

The principle of good cultural practice is to create an environment in which disease is less likely to occur. Again, management to encourage disease resistant species within the turf has to be a primary consideration, looking for good aeration and free drainage, together with careful control of fertilizer input, application of irrigation and timing of top dressings. This latter item is a frequent means of encouraging autumn diseases, when year-end dressings are applied late and cause some smothering of the swards at a time when top growth is slow and the grasses are damp.

In the same vein, operations to promote drying of the grass cover are always valuable. The switching of surface moisture is always best not to have to deal with disease in the first place and the use of fungicides should be a line of last resort.

Applying Sulphate of Iron as a routine dressing is often cited as a means of limiting incidence of fusarium patch. This is true up to a point, and there are other beneficial spin-offs from applying sprays of iron. On the other side of the coin though, acidification of the soil profile can come about by excessive use, and it must always be remembered that iron is not a fungicide. It may make an outbreak of fusarium less likely, but it will not stop one which has already started.

Working on the above principles, there are clubs that rarely, if ever, use fungicides to deal with disease problems. Nevertheless, there are many more reliant on chemical applications to keep putting surface turf in as good a condition as possible year-round, and these have to apply fungicides fairly regularly.

The main problem to be dealt with in relation to fungicide is (by far and away) fusarium patch disease. On average, the majority of clubs will treat for fusarium on greens three times in any one autumn/winter period, costing in the order of £1000-£1500 for an 18-hole golf course. This average treatment frequency may fall within a range of 1-5 treatments per annum depending upon the weather.

So, for most clubs, use of fungicide is a significant item within the budget for the green, merely allowing for applications on putting surfaces. Treatment of other sections of the course beyond immediate greens surround is very rare. Here, the cost-benefit of fungicide application is much less, as the effect of disease is much less damaging in the medium term.

Returning to greens, while application of fungicide is not cheap, nine times out of ten procrastination in its use is expensive too. A few spots of fusarium can run riot in quite a short spell, causing lingering damage. Never forget either that fungicides work best at the outbreak of disease, and the earlier that spraying is carried out (wind and rain permitting) the more likely the chance of complete success first time. Constant monitoring of disease outbreaks is essential if timing of spraying is to be to the best advantage.

When it comes to choice of fungicide for treatment of fusarium, in principle, systemic types are best for the bulk of the year, confining use of contact type materials to the very