info prev up next book cdrom email home

Vector Spherical Harmonic

The Spherical Harmonics can be generalized to vector spherical harmonics by looking for a Scalar Function $\psi$ and a constant Vector ${\bf c}$ such that

$\displaystyle {\bf M}$ $\textstyle \equiv$ $\displaystyle \nabla\times({\bf c}\psi)=\psi(\nabla\times{\bf c})+(\nabla\psi)\times {\bf c}$  
  $\textstyle =$ $\displaystyle (\nabla\psi)\times{\bf c} = -{\bf c}\times\nabla\psi,$ (1)

so
\begin{displaymath}
\nabla\cdot{\bf M}=0.
\end{displaymath} (2)

Now use the vector identities
$\displaystyle \nabla^2{\bf M}$ $\textstyle =$ $\displaystyle \nabla^2(\nabla\times{\bf M}) = \nabla\times(\nabla^2{\bf M})$  
  $\textstyle =$ $\displaystyle \nabla\times(\nabla^2{\bf c} \psi) = \nabla\times({\bf c}\nabla^2\psi)$ (3)
$\displaystyle k^2{\bf M}$ $\textstyle =$ $\displaystyle k^2\nabla\times({\bf c}\psi) = \nabla\times({\bf c}\nabla^2\psi),$ (4)

so
\begin{displaymath}
\nabla^2{\bf M}+k^2{\bf M}=\nabla\times[{\bf c}(\nabla^2\psi+k^2\psi)],
\end{displaymath} (5)

and ${\bf M}$ satisfies the vector Helmholtz Differential Equation if $\psi$ satisfies the scalar Helmholtz Differential Equation
\begin{displaymath}
\nabla^2\psi+k^2\psi=0.
\end{displaymath} (6)


Construct another vector function

\begin{displaymath}
{\bf N}\equiv {\nabla\times{\bf M}\over k},
\end{displaymath} (7)

which also satisfies the vector Helmholtz Differential Equation since
$\displaystyle \nabla^2{\bf N}$ $\textstyle =$ $\displaystyle {1\over k}\nabla^2(\nabla\times{\bf M})={1\over k}\nabla\times(\nabla^2{\bf M})$  
  $\textstyle =$ $\displaystyle {1\over k}\nabla\times(-k^2{\bf M}) = -k\nabla\times{\bf M}=-k^2{\bf N},$ (8)

which gives
\begin{displaymath}
\nabla^2{\bf N}+k^2{\bf N}=0.
\end{displaymath} (9)

We have the additional identity
$\displaystyle \nabla\times{\bf N}$ $\textstyle =$ $\displaystyle {1\over k}\nabla\times(\nabla\times{\bf M}) = {1\over k}\nabla(\nabla\cdot {\bf M})$  
  $\textstyle =$ $\displaystyle {1\over k}\nabla^2 {\bf M} -{1\over k}\nabla^2{\bf M}= {-\nabla^2{\bf M}\over k} = k{\bf M}.$ (10)


In this formalism, $\psi$ is called the generating function and ${\bf c}$ is called the Pilot Vector. The choice of generating function is determined by the symmetry of the scalar equation, i.e., it is chosen to solve the desired scalar differential equation. If ${\bf M}$ is taken as

\begin{displaymath}
{\bf M}=\nabla\times({\bf r}\psi),
\end{displaymath} (11)

where ${\bf r}$ is the radius vector, then ${\bf M}$ is a solution to the vector wave equation in spherical coordinates. If we want vector solutions which are tangential to the radius vector,
\begin{displaymath}
{\bf M}\cdot {\bf r}={\bf r}\cdot(\nabla\psi\times{\bf c}) = (\nabla\psi)({\bf c}\times{\bf r})=0,
\end{displaymath} (12)

so
\begin{displaymath}
{\bf c}\times{\bf r}={\bf0}
\end{displaymath} (13)

and we may take
\begin{displaymath}
{\bf c}={\bf r}
\end{displaymath} (14)

(Arfken 1985, pp. 707-711; Bohren and Huffman 1983, p. 88).


A number of conventions are in use. Hill (1954) defines


$\displaystyle {\bf V}_l^m$ $\textstyle \equiv$ $\displaystyle -\sqrt{l+1\over 2l+1} Y_l^m \hat{\bf r} + {1\over\sqrt{(l+1)(2l+1)}} {\partial Y_l^m\over\partial\theta}\hat{\boldsymbol{\theta}}$  
  $\textstyle \phantom{=}$ $\displaystyle \mathop{+} {iM\sqrt{(l+1)(2l+1)}\sin\theta} Y_l^m \hat{\boldsymbol{\phi}}$ (15)
$\displaystyle {\bf W}_l^m$ $\textstyle =$ $\displaystyle \sqrt{l\over 2l+1} Y_l^m \hat{\bf r} + {1\over\sqrt{l(2l+1)}} {\p...
...ymbol{\theta}}+ {iM\over\sqrt{l(2l+1)}\sin\theta} Y_l^m \hat{\boldsymbol{\phi}}$ (16)
$\displaystyle {\bf X}_l^m$ $\textstyle =$ $\displaystyle - {M\over\sqrt{l(l+1)}\sin\theta} Y_l^m \hat{\boldsymbol{\theta}}...
...\over\sqrt{l(l+1)}} {\partial Y_l^m\over\partial\theta}\hat{\boldsymbol{\phi}}.$ (17)

Morse and Feshbach (1953) define vector harmonics called ${\bf B}$, ${\bf C}$, and ${\bf P}$ using rather complicated expressions.


References

Arfken, G. ``Vector Spherical Harmonics.'' §12.11 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 707-711, 1985.

Blatt, J. M. and Weisskopf, V. ``Vector Spherical Harmonics.'' Appendix B, §1 in Theoretical Nuclear Physics. New York: Wiley, pp. 796-799, 1952.

Bohren, C. F. and Huffman, D. R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983.

Hill, E. H. ``The Theory of Vector Spherical Harmonics.'' Amer. J. Phys. 22, 211-214, 1954.

Jackson, J. D. Classical Electrodynamics, 2nd ed. New York: Wiley, pp. 744-755, 1975.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part II. New York: McGraw-Hill, pp. 1898-1901, 1953.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26