info prev up next book cdrom email home

Carlson-Levin Constant

N.B. A detailed on-line essay by S. Finch was the starting point for this entry.


Assume that $f$ is a Nonnegative Real function on $[0,\infty)$ and that the two integrals

\begin{displaymath}
\int_0^\infty x^{p-1-\lambda} [f(x)]^p\,dx
\end{displaymath} (1)


\begin{displaymath}
\int_0^\infty x^{q-1+\mu}[f(x)]^q\,dx
\end{displaymath} (2)

exist and are Finite. If $p=q=2$ and $\lambda=\mu=1$, Carlson (1934) determined


\begin{displaymath}
\int_0^\infty f(x)\,dx\leq \sqrt{\pi}\left({\int_0^\infty [f...
...right)^{1/4}\left({\int_0^\infty x^2[f(x)]^2\,dx}\right)^{1/4}
\end{displaymath} (3)

and showed that $\sqrt{\pi}$ is the best constant (in the sense that counterexamples can be constructed for any stricter Inequality which uses a smaller constant). For the general case


\begin{displaymath}
\int_0^\infty f(x)\,dx\leq C\left({\int_0^\infty x^{p-1-\lam...
...ight)^s\left({\int_0^\infty x^{q-1+\mu}[f(x)]^q\,dx}\right)^t,
\end{displaymath} (4)

and Levin (1948) showed that the best constant
\begin{displaymath}
C={1\over(ps)^s(qt)^t}
\left[{\Gamma\left({s\over\alpha}\rig...
...lambda+\mu)\Gamma\left({s+t\over\alpha}\right)}\right]^\alpha,
\end{displaymath} (5)

where
$\displaystyle s$ $\textstyle \equiv$ $\displaystyle {\mu\over p\mu+q\lambda}$ (6)
$\displaystyle t$ $\textstyle \equiv$ $\displaystyle {\lambda\over p\mu+q\lambda}$ (7)
$\displaystyle \alpha$ $\textstyle \equiv$ $\displaystyle 1-s-t$ (8)

and $\Gamma(z)$ is the Gamma Function.


References

Beckenbach, E. F.; and Bellman, R. Inequalities. New York: Springer-Verlag, 1983.

Boas, R. P. Jr. Review of Levin, V. I. ``Exact Constants in Inequalities of the Carlson Type.'' Math. Rev. 9, 415, 1948.

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/crlslvn/crlslvn.html

Levin, V. I. ``Exact Constants in Inequalities of the Carlson Type.'' Doklady Akad. Nauk. SSSR (N. S.) 59, 635-638, 1948. English review in Boas (1948).

Mitrinovic, D. S.; Pecaric, J. E.; and Fink, A. M. Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer, 1991.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26