That Pinch of Salt
Man's natural craving for salt has made him struggle for its possession. Salt has been held in such high esteem that it has actually been used as money in parts of the world remote from salt sources. In the present war, Allied soldiers have used salt to gain and keep the friendship of African natives.

Salt as a seasoning really serves a double role. Not only is salt in itself a flavor—but it also brings out other flavors. Like the blocking back on a football team, salt is the supporting character that makes it possible for the star to give his best performance. Imagine steak or an ear of corn without salt! Pure, high-grade salt makes good food taste better, because it sets the true flavor free.

Salt is such a common commodity we may fail to realize the important part it plays in our daily lives. Salt is involved in almost everything we eat, wear, or use. It is essential for life and health. Salt is also a major strategic war material. It is used by the chemical industry for manufacturing munitions and synthetic rubber.

This little booklet, prepared for Home Economics class use, is a complete lesson on salt. It describes the basic steps in the production and refinement of salt, it gives standards for judging the quality of salt, it tells how salt is used in industry and the home, and it gives tips on seasoning and cooking foods. It reveals the fact that salt is more than a mere condiment—it is indeed white magic!
Salt is such a plentiful and inexpensive commodity in America that we are apt to take for granted that it is plentiful everywhere. But such is not the case. Although the oceans, seas, and lakes of the world contain enough salt to blanket the earth with a cover 112 feet deep and deposits in the earth can provide an almost inexhaustible supply, salt is not evenly distributed over the earth.

In its native state, salt is impure. To meet the exacting requirements of most modern homemakers and industrial users, it must be refined and purified.

WHERE WE GET SALT

Salt is obtained from the sea and the earth. Salt water from the seas, lakes, or oceans may be run into shallow pools or basins, where it is evaporated by the sunshine. Or it may be heated in shallow pans until the water is evaporated.

Most of the salt used in this country is obtained from the earth. In certain sections of the United States, thick layers of rock salt have been formed underground. They are the result of prehistoric seas that have evaporated, leaving their salt. The Great Lakes area alone produces 66% of the salt produced in the United States and 20% of all the salt produced in the world. In fact, Michigan, the leading salt-producing state, could supply the entire nation with salt for the next million years! (Other principal salt-producing states, in order named, are New York, Ohio, Kansas, Louisiana, California, Texas, Utah, and West Virginia.)

Two methods are used for removing salt from the earth: the salt is mined like coal or it is pumped out of wells in the form of brine.

Mining. A mine shaft is dug down to the rock salt layer. Then the salt is blasted out and lifted in elevators to the surface where it is crushed and screened. (Rock salt contains soluble impurities of mineral nature and insoluble material including fragments of rock and dirt.)
Salt Wells. The most used method of obtaining salt from under the ground is by means of wells. This is the method used for securing brine for making Diamond Crystal Salt. First, a well is drilled hundreds of feet into the ground. When the desired salt deposit is reached, five pipes of different sizes, one inside of another, are lowered into the hole. The outermost pipe is sunk far enough to prevent surface water from seeping into the well. The next two go deeper and prevent the entrance of mineral water that might come from underground streams. The fourth pipe extends to the top of the salt deposit. Through it powerful pumps force fresh, clean water. This water dissolves the rock salt and forms a lake of brine at the bottom of the well.

When the brine becomes saturated (in about 3 months), the well is put into operation and brine is pumped to the surface through the fifth and smallest pipe. To accomplish this, fresh water is pumped into the well at a tremendous pressure through the fourth pipe. The pressure forces the heavy brine at the bottom of the well up through the small inner pipe to the surface. (Since the salt is dissolved before it is brought to the surface, insoluble rock, dirt, and other impurities remain in the bottom of the well. Thus, refining and purifying actually begin in the well.)

Flake-like Alberger crystals form on the surface of the clear, simmering brine in evaporator pan, sink to bottom, and are automatically raked out.

◆ METHODS OF REFINING SALT

After the salt brine is brought to the surface, it must be refined and purified still further. It is held in storage tanks for a while. Some of the impurities sink to the bottom and are drained off. Then the crystal clear brine goes to the refinery.

There are three methods of refining: grainer system, vacuum system, and Alberger process. Each produces salt with distinct characteristics. Only at Diamond Crystal are all three methods used.

◆ GRAINER SYSTEM

The oldest method of refining salt is known as the grainer or open-pan system. First, the salt brine is evaporated in shallow, open pans heated by steam pipes. As the water evaporates from the simmering (but not boiling) brine, coarse crystals form on the surface and sink to the bottom of the pans. These crystals are automatically raked into a trough of fast-flowing brine which washes off much of the impurity and carries crystals to the drier.

(The grainer method produces large, coarse, hard particles which dissolve slowly. Grainer salt produced by the Diamond Crystal Company is sold almost entirely for non-food industrial and farm uses.)

◆ VACUUM SYSTEM

The method used for producing granulated salt cubes is the most economical method because it is possible to use the same steam over and over to boil different batches of brine. Salt brine is boiled in several huge containers called vacuum pans. Steam is used to heat the first pan and the somewhat cooler steam from brine boiling in the first pan is used to heat the second pan and so on, down the line.
Brine boils at a lower temperature as vacuum is increased; so a higher vacuum is maintained in each successive pan. As the brine boils, water evaporates and salt cubes form. The vacuum method produces hard, cubical granules which dissolve relatively slowly. This salt is used in food production, non-food manufacturing, and stock feeding.

ALBERGER PROCESS

This process, which is used only by the Diamond Crystal Company, produces highly purified salt in a unique flake form. The salt brine goes through the entire evaporation process in a continuous flow, passing from supply tanks through a battery of four heaters which successively raise its temperature to 290°F. (This is above the boiling temperature of brine but the heavy pressure in the closed heaters prevents the water from boiling away.)

In the fourth and hottest heater, brine begins to deposit impurities due to action of heat. The brine then goes into a huge metal cylinder, filled with cobblestones, known as a graveler. The high temperature of the brine causes the impurity (chiefly gypsum) to deposit on the stones as boiler scale. Also the heater tubes become filled with impurities (see illustration below). They are drilled to remove gypsum.

The purified brine goes through a series of evaporating vessels or flashers. In the last flasher, the temperature is lowered and crystallization starts. The brine then rushes out like a geyser into large, shallow, circular evaporating pans. Here the flake-like crystals form quickly on the surface of the simmering brine and sink to the bottom. The crystals are raked into a well and enter a centrifugal drier. Most of brine is removed. The slight moisture remaining is evaporated by hot filtered air in a rotary drier.

The pure salt is then conveyed to magnetic vibrating screens ranging from 6 meshes per inch to 84! Here it is precision screened according to the size of salt flakes desired. The coarsest salt is used for Kosher salt, the next coarsest for cheese salt, then comes salt for topping crackers, butter salt, table salt, popcorn or peanut salt, and finally, the finest of all, salt for prepared flour mixes and dehydrated soups.

Now the salt is ready for packaging. Each type of salt has its own package or container: round, 26-ounce cartons for Diamond Crystal Shaker Salt and Iodized Shaker Salt for table use, 10-pound bags for Flake Salt for home canning and buttermaking, and 25 to 100-pound bags for salt for commercial uses.

(The Alberger process produces quick-dissolving, flake-like crystals of extremely high purity. This salt is used primarily for food—in the home and in commercial plants.)
Purity and high quality are important in salt as in any other foodstuff. Food processors know that the quality of their products is affected by the quality and kind of salt they use. They judge salt for quality by its purity, cleanliness, uniform particle size, and its resistance to caking. The same physical qualities demanded by food processors are equally important in the home. Homemakers, too, should be critical of the salt they use.

To meet the high standards set for "quality" salt, the processing of all Diamond Crystal Salt is rigidly controlled. Here are the methods used to insure uniform, pure, clean salt in every package.

♦ PURITY

Purity in salt is obtained by removing substances which occur in salt in its crude state such as calcium, magnesium, iron, and copper salts. These impurities affect the flavor of salt, making it harsh and brackish. Salt for use in seasoning foods should be highly refined because pure salt has a true salt flavor.

Diamond Crystal Salt is 99.96% pure, that is, it contains 99.96% sodium chloride. This substantially exceeds the U.S.P. standards for pure sodium chloride which is only 99.5%.

♦ CLEANLINESS

Bakers, buttermakers, cheese makers, and other food manufacturers demand clean, pure salt, free from insoluble materials. Diamond Crystal Salt is tested hourly. If a sample shows more than 10 parts per million of insoluble material, the production from which the sample was taken is not approved for food purposes. All Diamond Crystal Salt is made under the most sanitary conditions. Every employee is given a complete physical examination periodically.

♦ PARTICLE SIZE

The Diamond Crystal Salt Plant produces salt of different degrees of coarseness to meet the needs of homemakers, farmers, and manufacturers. The size and shape of the crystals affect the solubility. Slow- or quick-dissolving salts are desirable for processing different food products. For example, rapid solubility is important in buttermaking while slower solubility is essential in the manufacture of cheese, therefore fine flakes are used for salting butter and coarser flakes in cheese.
making. Diamond Crystal Shaker Salt is desirable for table use and cookery because it is quick-dissolving. It dissolves completely in 7 seconds in water at average room temperature (65°-70°F.). When quick-dissolving salt is sprinkled on food as a seasoning, it blends quickly and thoroughly with food juices.

Not only is crystal size and shape important, but the crystals must be uniform in size to guarantee consistent saltiness and to prevent over- or undersalting in seasoning and food processing. Diamond Crystal Salt, through controlled screening, varies no more than $2\frac{3}{4}\%$ in bulkiness. Thus, with Diamond Crystal Salt, you can depend on your measurements being the same every time.

FREE-POURING QUALITY

Salt has a tendency to cake or lump when exposed to moisture. The moisture condenses on the surface of the particles and dissolves part of the salt, forming a thin layer of saturated brine. This causes the grains of salt to stick together. Then when the salt dries, the grains knit together. Even 100% chemically pure salt will “draw moisture” when the relative humidity is 75% or higher. So always store salt in a dry place.

As the particle size of salt decreases, the tendency to cake or lump increases. To prevent caking and make it free-flowing, 1% of pure-food grade tri-calcium phosphate or magnesium carbonate is added to Diamond Crystal Shaker Salt. This conditioner absorbs moisture, thus preventing moisture from collecting on the salt and caking it. It does not affect the flavor or quality of the salt.

Moisture-resistant packages also help prevent caking. Diamond Crystal Shaker Salt, plain and iodized, comes to the consumer in a special moisture and dust-resistant 26-ounce package with a convenient spout that makes it easy to pour the salt into the shaker. Diamond Crystal Flake Salt, for cooking, canning, and buttermaking, comes in an attractive dust-resistant cloth bag.

IODIZED SALT

The discovery that the lack of iodine causes simple goiter and that iodine can be added to the diet through the use of iodized salt has done much to help prevent cases of simple goiter in areas where the soil and water are deficient in iodine. It is also a safeguard in places where the fresh or canned foods which are shipped are grown in areas deficient in iodine.

When salt is iodized, enough potassium iodide is added to supply average daily needs based on a yearly per capita salt consumption of 5 pounds. But unless the added potassium iodide is stabilized, it may escape. Tests show that unstabilized iodized salt loses as much as 75% of the iodine content in a few weeks. This loss not only decreases the iodine effectiveness of the salt but also results in discoloration and the development of an unpleasant medicinal odor and taste.

The Diamond Crystal Salt Company was the first company to stabilize the iodine content of iodized salt so that the iodine content remains the same until the last grain is used. The method consists of adding an exact amount of pure food-stuffs—corn sugar (dextrose) and baking soda (sodium bicarbonate)—to the pure salt along with the potassium iodide. Diamond Crystal Iodized Shaker Salt bears the seal of acceptance of the Council on Foods and Nutrition of the American Medical Association which is your assurance that it contains the amount of iodine recommended by medical authorities.

There is little chance of getting too much iodine in the diet because Nature has provided our bodies with a mechanism whereby unwanted iodine is eliminated. Only enough is kept to provide sufficient iodine to enable the thyroid gland to govern our metabolism.
When 329 homemakers were asked what qualities were important in table salt, they listed, in order of rank, taste, pouring quality, speed in dissolving; fineness of particles, and color. By comparative tests, they found that all salts are not the same. Here are some simple comparative tests you can try in your home. See, feel, and taste the difference in salts.

Test for Dissolving Speed

Fill two glasses $\frac{3}{4}$ full of cold water. Add 1 level tablespoon of Diamond Crystal Salt to one glass and the same amount of another table salt to the other glass at the same moment. Stir both five times at the same time. Note which salt dissolves faster. Quick-dissolving salt penetrates food thoroughly.

Test for Particle Size

Take a pinch of Diamond Crystal Salt and another table salt, one at a time, and roll between the thumb and forefinger. Note difference in fineness or smoothness. Fine, uniformly screened salt distributes itself readily throughout food.

Test for Color

Place an equal amount of Diamond Crystal Salt and any other table salt on a piece of black paper in separate mounds. Roll out flat, using side of salt carton. See which is whiter. Quality table salt should be white and should not exhibit a yellowish cast.

Test for Pouring Quality

Test several different salts for free-running quality when poured from salt shakers. For ease of use, table salt should be free running. It should not cake in the container or clog the shaker. And the salt carton should have a convenient spout to make it easy to pour the salt into the shaker or the measuring spoon.
The proper function of salt is to develop and bring out the natural flavors of foods—not to make foods taste salty. Only in such foods as pretzels, sauerkraut, dill pickles, and potato chips is an actual salt flavor desirable. Pure salt stimulates the sense of taste and helps bring out hidden flavors; it makes good food taste better. The more salt you use in foods, up to a certain point, the more flavor will be developed. So when you season foods, use as much salt as possible without producing a salty flavor.

Salt decreases the sourness of acids and increases the sweetness of sugars. Try this simple experiment to illustrate these points: Squeeze the juice from a grapefruit and strain. Place equal amounts in two glasses. Then sprinkle salt into one glass, a little at a time, tasting after salt dissolves. Stop adding salt when the juice becomes just slightly salty. Compare juice for flavor with juice that contains no salt. When tasting juice, take enough in the mouth to cover the entire tongue. Note how the flavor has been brought out, sweetness increased, and sourness decreased by the addition of salt.

Do you know what good foods can be made even better with the addition of just a dash of salt?

Here are some flavor-developing tips that will help you enhance the flavor of your foods. These helpful rules and proportions have been carefully tested and approved by leading food specialists. Let them guide you to better cooking and seasoning. Remember, people differ in taste preferences so use more or less salt to suit your personal taste.

Eggs

Poaching. Add 1 teaspoon salt to each cup of water when poaching eggs. The addition of salt helps to hasten the coagulation of the egg white and prevents it from spreading too much.

Beating whites. A dash of salt added to egg whites makes them whip more easily and helps form a stiffer foam. When making an angel food cake, always add the salt called for in the recipe to the egg whites before beating.

Poultry

Roasting. Sprinkle or rub salt inside of bird before stuffing. Brush outside with soft fat and sprinkle with salt.

Frying. Dip pieces of chicken in salted flour, using $\frac{1}{2}$ cup flour and $\frac{1}{2}$ teaspoon salt for a 2-pound bird. Or toss pieces of chicken in paper bag with seasoned flour to coat quickly.

Stewing. Add 1$\frac{1}{2}$ teaspoons salt to the water when stewing a 4 to 6-pound fowl.
FISH

Baking. Dip fillets or slices of fish in well-salted milk (1 tablespoon salt to each cup of milk) and then in fine bread crumbs or crushed cereal flakes before baking.

Broiling. Sprinkle fillets with salt, pepper, and flour.

Sautéing. Roll slices or fillets in salted flour or salted cornmeal.

MEAT

Roasting. Roasts may be salted before cooking if desired. While salt tends to draw out juices, the depth to which salt penetrates the surface of a roast is too slight to make much difference. Use $\frac{3}{4}$ to 1 teaspoon salt for each pound of meat.

Broiling. To prevent the loss of juice, salt broiled meat just before turning. Broil until the top side is done. Season with salt and pepper. Then turn and cook other side. Season and serve.

Panbroiling. Brown meat on both sides first. Then season with salt and pepper and continue cooking until done.

Stewing. Dredge pieces of meat in mixture of flour, salt, and pepper, using at least 1 teaspoon salt per pound of meat. Brown meat in fat before stewing.

Pot Roast. Rub pot roast with salt and pepper or mixture of salt, pepper, and flour before cooking.

VEGETABLES

Boiling. Prepare vegetables just before cooking—do not allow to stand. Cook fresh or quick-frozen vegetables in briskly boiling salted water. Allow $\frac{3}{4}$ to 1 teaspoon salt for each pound of vegetable or each pint of water used.

Cook vegetables in a small amount of water in a covered saucepan to conserve nutrients and flavor.

Cook only until just tender. (See vegetable cooking chart on the back of this booklet for quantity to purchase for four, preparation, and cooking time.)

Always taste vegetables before serving, adding more seasoning, if needed, to suit personal taste. Serve at once.

Steaming. Steamed vegetables may be salted either at the beginning of the cooking period or just before they are served.

Well-seasoned, properly cooked vegetables add color, food value, and appetite appeal to family meals.
Allow 3/4 to 1 teaspoon salt for each pound of vegetable used. Taste before serving.

DESSERTS

Sweets. Salt improves sweet foods, so always add a little to candies, ice creams, and sweet desserts. Add a dash to chocolate dishes or to cocoa to emphasize the chocolate flavor.

Cakes. When substituting unsalted shortenings, such as vegetable shortening or lard, for butter in cake or cooky recipes, add 3/4 teaspoon extra salt for each cup of flour. Use more salt for chocolate cakes than for plain cakes.

Whipped Cream. To make light cream easier to whip, add 3/4% teaspoon salt to each cup of cream. Place in bowl of ice and water and whip with rotary egg beater. Use cream two or three days old.

CEREAL FOODS

Cooked Cereals. Cereals need salt to improve their bland flavor. Always add salt to cornstarch puddings, cooked cereals, and breads. In cooking cereals, such as rice, oatmeal, cornmeal, or wheat-meal, use about 1 1/2 teaspoons salt to each cup of uncooked cereal.

Quick Breads. Formuffins, biscuits, etc., use 3/4 to 1/2 teaspoon salt to each cup of flour. (Use the larger amount when using vegetable shortening or lard and the smaller amount when using butter or margarine.)

Yeast Bread. Salt not only adds flavor to bread, but it helps control fermentation of yeast by regulating the growth. Too much salt retards development of yeast. The usual proportion is 1 to 1 1/2 teaspoons salt per cup liquid or per pound flour.

SALT AND HEALTH

Salt is necessary for life. Sodium chloride (salt) helps maintain the proper relationship between the blood and the body cells. Carnivorous or meat-eating animals do not crave salt because they obtain sufficient salt for their needs from the blood and the flesh of their prey. But Man and herbivorous animals, whose diets are composed primarily of fruits and vegetables, are provided by Nature with a craving for salt. This helps to insure a consumption of enough salt to maintain the right balance of mineral salts in the blood and tissues, since vegetables and fruits are low in sodium chloride (salt) content.

Salt aids digestion. Salt stimulates digestion and gives a feeling of well-being. It stimulates the flow of saliva and gastric juice and assists the body in the elimination of waste.

Salt prevents fatigue. When the amount of salt in the body is reduced by perspiration, weakness results. For a real pick-up that will help you to resist fatigue after excessive perspiration in hot weather, dissolve 3/2 teaspoon salt in 3/2 glass cold water and drink. Follow with a glass of clear water. Summertime diets are lower in meats and higher in fruits and vegetables, so use salt more freely in summer.
Proper cooking is the secret of palatable, attractive vegetables with maximum nutritive value. Cook vegetables in briskly boiling salted water, using $\frac{3}{4}$ to 1 teaspoon salt per pint of water or for each pound of vegetable. Use cooking times given below. Start counting time when water comes to a boil again after vegetable is added.

<table>
<thead>
<tr>
<th>VEGETABLES</th>
<th>QUANTITY AS PURCHASED FOR FOUR</th>
<th>PREPARATION FOR COOKING</th>
<th>COOKING TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTICHOKES, French</td>
<td>4</td>
<td>Whole</td>
<td>25 to 40 min.</td>
</tr>
<tr>
<td>ARTICHOKES, Jerusalem</td>
<td>1 pound</td>
<td>Pared, whole or sliced</td>
<td>15 to 30 min.</td>
</tr>
<tr>
<td>ASPARAGUS</td>
<td>1 bunch (125 pounds)</td>
<td>Tied in bundles or cut</td>
<td>15 to 25 min. 8 to 10 min.</td>
</tr>
<tr>
<td>BEANS, Green and Wax</td>
<td>1 pound</td>
<td>Whole or sliced</td>
<td>20 to 30 min. 8 to 10 min.</td>
</tr>
<tr>
<td>BEANS, Lima</td>
<td>2 to 3 pounds</td>
<td>Shelled</td>
<td>25 to 35 min. 16 to 18 min.</td>
</tr>
<tr>
<td>BEETS, Young</td>
<td>1 bunch (125 pounds)</td>
<td>Unpeeled, whole</td>
<td>30 to 45 min.</td>
</tr>
<tr>
<td>BEETS, Old</td>
<td>1 bunch (125 pounds)</td>
<td>Unpeeled, whole</td>
<td>1 to 2 hrs.</td>
</tr>
<tr>
<td>BROCCOLI</td>
<td>1 bunch (2 pounds)</td>
<td>Stalks, split</td>
<td>10 to 20 min. 5 to 8 min.</td>
</tr>
<tr>
<td>BRUSSELS SPROUTS</td>
<td>1 quart (125 pounds)</td>
<td>Whole</td>
<td>10 to 20 min. 2 to 6 min.</td>
</tr>
<tr>
<td>CABBAGE</td>
<td>125 pounds</td>
<td>Shredded or quartered</td>
<td>7 to 15 min.</td>
</tr>
<tr>
<td>CARROTS, New</td>
<td>1 pound</td>
<td>Whole or sliced</td>
<td>15 to 20 min.</td>
</tr>
<tr>
<td>CARROTS, Old</td>
<td>1 pound</td>
<td>Diced or sliced</td>
<td>20 to 25 min.</td>
</tr>
<tr>
<td>CAULIFLOWER</td>
<td>1 head (2 to 3 pounds)</td>
<td>Florets or whole</td>
<td>10 to 30 min. 4 to 6 min.</td>
</tr>
<tr>
<td>CELERY</td>
<td>1 bunch (125 pounds)</td>
<td>125-inch pieces</td>
<td>15 to 25 min.</td>
</tr>
<tr>
<td>CORN, Sweet on the cob</td>
<td>8 ears</td>
<td>Husks and silk removed</td>
<td>6 to 10 min. 2 min.</td>
</tr>
<tr>
<td>GREENS, Beet, Dandelion, Turnip, Kale, and Swiss Chard</td>
<td>1 pound</td>
<td>Tough stems removed</td>
<td>15 to 25 min. 20 min.</td>
</tr>
<tr>
<td>KOHLRABI</td>
<td>4 (1 pound)</td>
<td>Pared, sliced</td>
<td>20 to 30 min.</td>
</tr>
<tr>
<td>ONIONS, Small</td>
<td>1 pound (25 to 30)</td>
<td>Whole</td>
<td>15 to 35 min.</td>
</tr>
<tr>
<td>PARSNIPS</td>
<td>1 pound</td>
<td>Pared, whole or sliced</td>
<td>20 to 30 min.</td>
</tr>
<tr>
<td>PEAS</td>
<td>2 pounds</td>
<td>Shelled</td>
<td>10 to 25 min. 5 to 7 min.</td>
</tr>
<tr>
<td>POTATOES, White</td>
<td>1 pound (5 to 8)</td>
<td>Whole or halved</td>
<td>25 to 40 min.</td>
</tr>
<tr>
<td>POTATOES, Sweet</td>
<td>1 pound (4 medium)</td>
<td>Halved</td>
<td>20 to 30 min.</td>
</tr>
<tr>
<td>RUTABAGAS</td>
<td>1 pound (1 small)</td>
<td>Pared, diced</td>
<td>20 to 30 min.</td>
</tr>
<tr>
<td>SPINACH</td>
<td>1 pound (32 peck)</td>
<td>Tough stems removed</td>
<td>8 to 10 min. 4 to 6 min.</td>
</tr>
<tr>
<td>SQUASH, Summer</td>
<td>2 pounds</td>
<td>Pared, sliced</td>
<td>10 to 20 min.</td>
</tr>
<tr>
<td>TOMATOES</td>
<td>1 pound (4 medium)</td>
<td>Quartered</td>
<td>5 to 10 min.</td>
</tr>
<tr>
<td>TURNIPS</td>
<td>125 pounds (4 to 5)</td>
<td>Pared, sliced or diced</td>
<td>15 to 25 min.</td>
</tr>
</tbody>
</table>